METHODS: Core flow rate, chitosan coating, and flaxseed mucilage concentration were optimised for the microencapsulation of L. rhamnosus. The microbeads were characterised and evaluated on microencapsulation efficiency and cell released after 6 h of sequential digestion.
RESULTS: The optimised parameters for the L. rhamnosus microencapsulation were 1.0 mL/min core flow rate, 0.4% (w/v) chitosan coating, and 0.4% (w/v) flaxseed mucilage. The L. rhamnosus microbeads with flaxseed mucilage in core and wall materials had a smooth surface with 781.3 µm diameter, the highest microencapsulation efficiency (98.8% w/w), lowest swelling (5196.7% w/w) and erosion ratio (515.5% w/w), and least cell release (<40% w/w) with 9.31 log10 CFU mL-1 after sequential digestion.
CONCLUSIONS: This study showed the protective capacity of flaxseed mucilage towards the L. rhamnosus GG during microencapsulation and gastrointestinal environment.
METHODS: Whole exome sequencing (WES) was performed on all patients and their parents, followed by Sanger sequencing validation. Bioinformatics tools were used to provide supporting evidence for pathogenicity of variants. To confirm that a mutation is de novo, paternity test was carried out. High resolution melting curve analysis was performed to assess the allele frequency in normal controls for mutations that were found in the patients.
RESULTS: The patients showed typical characteristics of HR including lower limb deformity, hypophosphatemia, and elevated alkaline phosphatase. WES revealed two variants in the PHEX gene and one variant in the dentin matrix protein 1 (DMP1) gene. Two of the three variants were novel, including c.1946_1954del (p.Gly649_Arg651del) in PHEX and c.54 + 1G > A in DMP1. Our data suggests that the novel p.Gly649_Arg651del variant is likely pathogenic for HR disease.
CONCLUSIONS: This study extends the variant spectrum of the PHEX and DMP1 genes. Our findings indicate that WES is an advantageous approach for diagnosis of genetic diseases which are heterogeneous.
METHODOLOGY: Employing the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria, this study highlights diverse modeling techniques shaping asset lifetime evaluation within the PdM context from 34 scholarly articles.
RESULTS: The study revealed four important findings: various PdM and DT modelling techniques, their diverse approaches, predictive outcomes, and implementation of maintenance management. These findings align with the ongoing exploration of emerging applications in healthcare, utilities (smart water management), and agriculture (smart farm). In addition, it sheds light on the critical functions of PdM and DT, emphasising their extraordinary ability to drive revolutionary change in dynamic industrial challenges. The results highlight these methodologies' flexibility and application across many industries, providing vital insights into their potential to revolutionise asset management and maintenance practice for real-time monitoring.
CONCLUSIONS: Therefore, this systematic review provides a current and essential resource for academics, practitioners, and policymakers to refine PdM strategies and expand the applicability of DT in diverse industrial sectors.