Displaying publications 1 - 20 of 136 in total

Abstract:
Sort:
  1. Lau YL, Fong MY
    Exp. Parasitol., 2008 Jul;119(3):373-8.
    PMID: 18457835 DOI: 10.1016/j.exppara.2008.03.016
    The full length surface antigen 2 (SAG2) gene of the protozoan parasite Toxoplasma gondii was cloned and intracellularly expressed in the Pichia pastoris expression system. The molecular weight of the expressed recombinant SAG2 (36 kDa) was much larger than the native SAG2 (22 kDa). This discrepancy in size was due to hyperglycosylation, as deglycosylation assay reduced the size of the recombinant SAG2 to 22 kDa. Despite being hyperglycosylated, the recombinant SAG2 reacted strongly with pooled anti-Toxoplasma human serum, pooled anti-Toxoplasma mouse serum and a SAG2-specific monoclonal antibody. The glycosylated recombinant SAG2 was further evaluated in Western blot and in-house enzyme-linked immunosorbent assay (ELISA) using 80 human serum samples, including confirmed early acute (IgM positive, IgG negative; n=20), acute (IgM positive, IgG positive; n=20) and chronic (IgM negative, IgG positive; n=20) toxoplasmosis patients, and toxoplasmosis negative control patients (n=20). Results of the Western blot showed that the recombinant SAG2 reacted with all 60 samples of the toxoplasmosis cases but not with the Toxoplasma-negative samples. The sensitivity of in-house ELISA was 80%, 95% and 100% for early acute, acute and chronic patients' serum samples, respectively. Vaccination study showed that serum from mice immunised with the glycosylated recombinant SAG2 reacted specifically with the native SAG2 of T. gondii. The mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P<0.01) and their survival time was increased compared to controls. Therefore, the present study shows that the P. pastoris-derived recombinant SAG2 was specific and suitable for use as antigen for detecting anti-Toxoplasma IgG and IgM antibodies. The vaccination study showed that recombinant SAG2 protein was immunoprotective in mice against lethal challenge.
  2. Fong MY, Lau YL
    Parasitol. Res., 2004 Jan;92(2):173-6.
    PMID: 14655048
    A gene encoding the larval excretory-secretory antigen TES-120 of the dog ascarid worm Toxocara canis was cloned into the methylotrophic yeast Pichia pastoris. Specificity of the recombinant TES-120 antigen produced by the yeast was investigated. Forty-five human serum samples from patients infected with different()parasitic organisms, including 8 cases of toxocariasis, were tested against the recombinant antigen in immunoblot assays. Results from the assays showed that the recombinant TES-120 antigen reacted with sera from toxocariasis patients only. This highly specific recombinant TES-120 antigen can potentially be used for the development of an inexpensive serodiagnostic assay for human toxocariasis.
  3. Lai MY, Lau YL
    Parasit Vectors, 2017 Oct 02;10(1):456.
    PMID: 28969712 DOI: 10.1186/s13071-017-2387-y
    BACKGROUND: The identification of receptors or binding partners of Toxoplasma gondii from humans is an essential activity. Many proteins involved in T. gondii invasion have been characterized, and their contribution for parasite entry has been proposed. However, their molecular interactions remain unclear.

    RESULTS: Yeast two-hybrid (Y2H) experiment was used to identify the binding partners of surface antigens of T. gondii by using SAG2 as bait. Colony PCR was performed and positive clones were sent for sequencing to confirm their identity. The yeast plasmids for true positive clones were rescued by transformation into E. coli TOP 10F' cells. The interplay between bait and prey was confirmed by β-galactosidase assay and co-immunoprecipitation experiment. We detected 20 clones interacting with SAG2 based on a series of the selection procedures. Following the autoactivation and toxicity tests, SAG2 was proven to be a suitable candidate as a bait. Thirteen clones were further examined by small scale Y2H experiment. The results indicated that a strong interaction existed between Homo sapiens zinc finger protein and SAG2, which could activate the expressions of the reporter genes in diploid yeast. Co-immunoprecipitation experiment result indicated the binding between this prey and SAG2 protein was significant (Mann-Whitney U-test: Z = -1.964, P = 0.05).

    CONCLUSIONS: Homo sapiens zinc finger protein was found to interact with SAG2. To improve the understanding of this prey protein's function, advanced investigations need to be carried out.

  4. Ching XT, Fong MY, Lau YL
    Front Microbiol, 2016;7:609.
    PMID: 27199938 DOI: 10.3389/fmicb.2016.00609
    Toxoplasmosis is a foodborne disease caused by Toxoplasma gondii, an obligate intracellular parasite. Severe symptoms occur in the immunocompromised patients and pregnant women leading to fatality and abortions respectively. Vaccination development is essential to control the disease. The T. gondii dense granule antigen 2 and 5 (GRA2 and GRA5) have been targeted in this study because these proteins are essential to the development of parasitophorous vacuole (PV), a specialized compartment formed within the infected host cell. PV is resistance to host cell endosomes and lysosomes thereby protecting the invaded parasite. Recombinant dense granular proteins, GRA2 (rGRA2) and GRA5 (rGRA5) were cloned, expressed, and purified in Escherichia coli, BL21 (DE3) pLysS. The potential of these purified antigens as subunit vaccine candidates against toxoplasmosis were evaluated through subcutaneous injection of BALB/c mice followed by immunological characterization (humoral- and cellular-mediated) and lethal challenge against virulent T. gondii RH strain in BALB/c mice. Results obtained demonstrated that rGRA2 and rGRA5 elicited humoral and cellular-mediated immunity in the mice. High level of IgG antibody was produced with the isotype IgG2a/IgG1 ratio of ≈0.87 (p < 0.001). Significant increase (p < 0.05) in the level of four cytokines (IFN-γ, IL-2, IL-4, and IL-10) was obtained. The antibody and cytokine results suggest that a mix mode of Th1/Th2-immunity was elicited with predominant Th1-immune response inducing partial protection against T. gondii acute infection in BALB/c mice. Our findings indicated that both GRA2 and GRA5 are potential candidates for vaccine development against T. gondii acute infection.
  5. Ng YH, Subramaniam V, Lau YL
    Vet. Parasitol., 2015 Nov 30;214(1-2):200-3.
    PMID: 26455572 DOI: 10.1016/j.vetpar.2015.09.032
    Sarcocystosis in meat-producing animals is a major cause of reduced productivity in many countries, especially those that rely on agriculture. Although several diagnostic methods are available to detect sarcocystosis, many are too time-consuming for routine use in abattoirs and meat inspection centers, where large numbers of samples need to be tested. This study aimed to compare the sensitivity of the methylene blue tissue preparation, unstained tissue preparation and nested PCR in the detection of sarcocysts in tissue samples. Approximately three-fold more sarcocysts were detected in methylene blue-stained tissue compared to unstained controls (McNemar's test: P<0.01). Test sensitivity was comparable to that of the gold standard for sarcocyst detection, nested polymerase chain reaction. These results suggest that methylene blue can be used in tissue compression as a rapid, safe, and inexpensive technique for the detection of ruminant sarcocystosis in abattoirs.
  6. Cheong FW, Fong MY, Lau YL
    Acta Trop., 2016 Feb;154:89-94.
    PMID: 26624919 DOI: 10.1016/j.actatropica.2015.11.005
    Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes.
  7. Thiruvengadam G, Init I, Fong MY, Lau YL
    Trop Biomed, 2011 Dec;28(3):506-13.
    PMID: 22433878 MyJurnal
    Surface antigens are the most abundant proteins found on the surface of the parasite Toxoplasma gondii. Surface antigen 1 (SAG1) and Surface antigen 2 (SAG2) remain the most important and extensively studied surface proteins. These antigens have been identified to play a role in host cell invasion, immune modulation, virulence attenuation. Recombinant SAG1/2 was cloned and expressed in yeast Pichia pastoris. We describe here optimization of critical parameters involved in high yield expression of the recombinant SAG1/2. Our results suggest that recombinant SAG1/2 were best expressed at 30ºC, pH 6 and 1% methanol as the carbon source by X33 Pichia cells. Additional optimizations included the downstream process such as ammonium sulphate precipitation and dialysis. The fusion protein was purified using Ni-NTA purification system with 80% recovery. The purified protein was 100% specific and sensitive in detection of toxoplasmosis.
  8. Lau YL, Shamilah H, Fong MY
    Trop Biomed, 2006 Dec;23(2):186-93.
    PMID: 17322821 MyJurnal
    A truncated form of surface antigen 2 (SAG2) of the protozoan parasite Toxoplasma gondii was cloned and expressed in the methylotrophic yeast Pichia pastoris. This recombinant antigen, designated as recSAG2-N, contained only the N-terminal half of the native SAG2. The recSAG2-N was secreted by the Pichia pastoris into the culture supernatant, and it was harvested by using the trichloroacetic acid precipitation method. Specificity of recSAG2-N was evaluated in western blot assays. Fifty human serum samples, including 32 from confirmed cases of toxoplasmosis, were tested. Results from the assays showed that recSAG2-N reacted with sera from the toxoplasmosis cases only. In vivo experiments showed that serum from mice which received recSAG2-N reacted with the native SAG2 of T. gondii.
  9. Fong MY, Lau YL, Zulqarnain M
    Biotechnol. Lett., 2008 Apr;30(4):611-8.
    PMID: 18043869
    The surface antigen 2 (SAG2) gene of the protozoan parasite, Toxoplasma gondii, was cloned and extracellularly expressed in the yeast Pichia pastoris. The effectiveness of the secreted recombinant SAG2 (rSAG2-S) as a serodiagnosis reagent was assessed by western blots and ELISA. In the western blot assay, rSAG2-S reacted with all Toxoplasma-antibody positive human serum samples but not with Toxoplasma-negative samples. In the ELISA, rSAG2-S yielded sensitivity rates ranging from 80% (IgG negative, IgM positive) to 100% (IgG positive, IgM negative). In vivo experiments showed that serum from mice immunized with rSAG2-S reacted specifically with the native SAG2 of T. gondii. These mice were protected when challenged with live cells of T. gondii.
  10. Ching XT, Fong MY, Lau YL
    Am. J. Trop. Med. Hyg., 2017 Jun;96(6):1441-1447.
    PMID: 28719288 DOI: 10.4269/ajtmh.16-0548
    AbstractToxoplasma gondii infects a broad range of warm-blooded hosts, including humans. Important clinical manifestations include encephalitis in immunocompromised patients as well as miscarriage and fetal damage during early pregnancy. Toxoplasma gondii dense granule antigen 2 and 5 (GRA2 and GRA5) are essential for parasitophorous vacuole development of the parasite. To evaluate the potential of GRA2 and GRA5 as recombinant DNA vaccine candidates, these antigens were cloned into eukaryotic expression vector (pcDNA 3.1C) and evaluated in vaccination experiments. Recombinant DNA vaccines constructed with genes encoding GRAs were validated in Chinese hamster ovary cells before evaluation using lethal challenge of the virulent T. gondii RH strain in BALB/c mice. The DNA vaccines of pcGRA2 and pcGRA5 elicited cellular-mediated immune response with significantly higher levels of interferon-gamma, interleukin-2 (IL-2), IL-4, and IL-10 (P < 0.05) compared with controls. A mixed T-helper cell 1 (Th1)/Th2 response was associated with slightly prolonged survival. These findings provide evidence that DNA vaccination with GRA2 and GRA5 is associated with Th1-like cell-mediated immune responses. It will be worthwhile to construct recombinant multiantigen combining full-length GRA2 or/and GRA5 with various antigenic proteins such as the surface antigens and rhoptry antigens to improve vaccination efficacy.
  11. Lai MY, Ooi CH, Lau YL
    Am. J. Trop. Med. Hyg., 2017 Nov;97(5):1597-1599.
    PMID: 28820700 DOI: 10.4269/ajtmh.17-0427
    In this study, we developed a recombinase polymerase amplification (RPA) assay for specific diagnosis of Plasmodium knowlesi. Genomic DNA was extracted from whole blood samples using a commercial kit. With incubation at 37°C, the samples were successfully amplified within 20 minutes. The end product of RPA was further examined by loading onto agarose gel and a specific band was observed with a size of 128 bp. The RPA assay exhibited high sensitivity with limits of detection down to one copy of the plasmid. From the specificity experiments, it was demonstrated that all P. knowlesi samples (N = 45) were positive while other Plasmodium spp. (N = 42) and negative samples (N = 6) were negative. Therefore, the RPA assay is a highly promising approach with the potential to be used in resource-limited settings. This assay can be further optimized for bedside and on field application.
  12. Ahmed MA, Lau YL, Quan FS
    Malar. J., 2018 Jul 27;17(1):274.
    PMID: 30053885 DOI: 10.1186/s12936-018-2423-1
    BACKGROUND: Plasmodium knowlesi a parasite of the macaques is currently the most common cause of human malaria in Malaysia. The thrombospondin-related adhesive protein (TRAP) gene is pre-erythrocytic stage antigen. It is a well-characterized vaccine candidate in Plasmodium vivax and Plasmodium falciparum, however, no study has been done in the orthologous gene of P. knowlesi. This study investigates nucleotide diversity, haplotypes, natural selection and population differentiation of full-length pktrap genes in clinical samples from Malaysia.

    METHODS: Forty full-length pktrap sequences from clinical isolates of Malaysia along with the reference H-strain were downloaded from published databases. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. McDonald-Kreitman test was conducted using P. vivax and Plasmodium coatneyi as ortholog sequence in DnaSP 5.10 software. Population genetic differentiation index (FST) of parasite populations was determined using Arlequin v3.5. Phylogenetic relationships between trap ortholog genes were determined using MEGA 5.0 software.

    RESULTS: Comparison of 40 full-length pktrap sequences along with the H-strain identified 74 SNPs (53 non-synonymous and 21 synonymous substitutions) resulting in 29 haplotypes. Analysis of the full-length gene showed that the nucleotide diversity was lower compared to its nearest ortholog pvtrap. Domain-wise analysis indicated that the proline/asparagine rich region had higher nucleotide diversity compared to the von Willebrand factor domain and the thrombospondin-type-1 domain. McDonald-Kreitman test identified that the ratio of the number of nonsynonymous to synonymous polymorphic sites within P. knowlesi was significantly higher than that of the number of nonsynonymous to synonymous fixed sites between P. knowlesi and P. vivax. The von Willebrand factor domain also indicated balancing selection using MK test, however, it did not give significant results when tested with P. coatneyi as an outgroup. Phylogenetic analysis of full-length genes identified three distinct sub-clusters of P. knowlesi, one originating from Peninsular Malaysia and two originating from Malaysian Borneo. High population differentiation values was observed within samples from Peninsular Malaysia and Malaysian Borneo.

    CONCLUSIONS: This study is the first to report on the genetic diversity and natural selection of full-length pktrap. Low level of genetic diversity was found across the full-length gene of pktrap. Balancing selection of the von Willebrand factor domain indicated that TRAP could be a target in inducing immune response against P. knowlesi infections. However, higher number of samples would be necessary to further confirm the findings.

  13. Lai MY, Ooi CH, Lau YL
    Am. J. Trop. Med. Hyg., 2018 03;98(3):700-703.
    PMID: 29260656 DOI: 10.4269/ajtmh.17-0738
    The aim of this study was to develop a recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip method for specific diagnosis of Plasmodium knowlesi. With incubation at 37°C, the 18S rRNA gene of P. knowlesi was successfully amplified within 12 minutes. By adding a specifically designed probe to the reaction solution, the amplified RPA product can be visualized on a LF strip. The RPA assay exhibited high sensitivity with limits of detection down to 10 parasites/μL of P. knowlesi. Nonetheless, it was demonstrated that all P. knowlesi (N = 41) and other Plasmodium sp. (N = 25) were positive while negative samples (N = 8) were negative. Therefore, a combination of RPA and LF strip detection is a highly promising approach with the potential to be suitable for use in resource-limited settings.
  14. Fong MY, Cheong FW, Lau YL
    Parasit Vectors, 2018 Sep 26;11(1):527.
    PMID: 30257710 DOI: 10.1186/s13071-018-3118-8
    BACKGROUND: The merozoite of the zoonotic Plasmodium knowlesi invades human erythrocytes via the binding of its Duffy binding protein (PkDBPαII) to the Duffy antigen on the eythrocytes. The Duffy antigen has two immunologically distinct forms, Fya and Fyb. In this study, the erythrocyte-binding assay was used to quantitatively determine and compare the binding level of PkDBPαII to Fya+/b+ and Fya+/b- human erythrocytes.

    RESULTS: In the erythrocyte-binding assay, binding level was determined by scoring the number of rosettes that were formed by erythrocytes surrounding transfected mammalian COS-7 cells which expressed PkDBPαII. The assay result revealed a significant difference in the binding level. The number of rosettes scored for Fya+/b+ was 1.64-fold higher than that of Fya+/b- (155.50 ± 34.32 and 94.75 ± 23.16 rosettes, respectively; t(6) = -2.935, P = 0.026).

    CONCLUSIONS: The erythrocyte-binding assay provided a simple approach to quantitatively determine the binding level of PkDBPαII to the erythrocyte Duffy antigen. Using this assay, PkDBPαII was found to display higher binding to Fya+/b+ erythrocytes than to Fya+/b- erythrocytes.

  15. Fong MY, Rashdi SA, Yusof R, Lau YL
    Malar. J., 2015;14:91.
    PMID: 25890095 DOI: 10.1186/s12936-015-0610-x
    Plasmodium knowlesi is one of the monkey malaria parasites that can cause human malaria. The Duffy binding protein of P. knowlesi (PkDBPαII) is essential for the parasite's invasion into human and monkey erythrocytes. A previous study on P. knowlesi clinical isolates from Peninsular Malaysia reported high level of genetic diversity in the PkDBPαII. Furthermore, 36 amino acid haplotypes were identified and these haplotypes could be separated into allele group I and allele group II. In the present study, the PkDBPαII of clinical isolates from the Malaysian states of Sarawak and Sabah in North Borneo was investigated, and compared with the PkDBPαII of Peninsular Malaysia isolates.
  16. Liew PS, Teh CS, Lau YL, Thong KL
    Trop Biomed, 2014 Dec;31(4):709-20.
    PMID: 25776596 MyJurnal
    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.
  17. Ahmed MA, Fong MY, Lau YL, Yusof R
    Malar. J., 2016;15(1):241.
    PMID: 27118390 DOI: 10.1186/s12936-016-1294-6
    The zoonotic malaria parasite Plasmodium knowlesi has become an emerging threat to South East Asian countries particular in Malaysia. A recent study from Sarawak (Malaysian Borneo) discovered two distinct normocyte binding protein xa (Pknbpxa) types of P. knowlesi. In the present study, the Pknbpxa of clinical isolates from Peninsular Malaysia and Sabah (Malaysian Borneo) were investigated for the presence of Pknbpxa types and natural selection force acting on the gene.
  18. Fong MY, Rashdi SA, Yusof R, Lau YL
    PLoS ONE, 2016;11(5):e0155627.
    PMID: 27195821 DOI: 10.1371/journal.pone.0155627
    BACKGROUND: Plasmodium knowlesi is a simian malaria parasite that has been reported to cause malaria in humans in Southeast Asia. This parasite invades the erythrocytes of humans and of its natural host, the macaque Macaca fascicularis, via interaction between the Duffy binding protein region II (PkDBPαRII) and the Duffy antigen receptor on the host erythrocytes. In contrast, the P. knowlesi gamma protein region II (PkγRII) is not involved in the invasion of P. knowlesi into humans. PkγRII, however, mediates the invasion of P. knowlesi into the erythrocytes of M. mulata, a non-natural host of P. knowlesi via a hitherto unknown receptor. The haplotypes of PkDBPαRII in P. knowlesi isolates from Peninsular Malaysia and North Borneo have been shown to be genetically distinct and geographically clustered. Also, the PkDBPαRII was observed to be undergoing purifying (negative) selection. The present study aimed to determine whether similar phenomena occur in PkγRII.

    METHODS: Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00) programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright's FST fixation index in DnaSP (version 5.10.00). Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3).

    RESULTS: A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd) and nucleotide diversity (π) with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative) selection, geographical clustering of haplotypes, and high inter-population genetic differentiation (FST index). The main differences between PkγRII and PkDBPαRII include length polymorphism and no departure from neutrality (as measured by Tajima's D statistics) in the PkγRII.

    CONCLUSION: Despite the biological difference between PkγRII and PkDBPαRII, both generally have similar genetic diversity level, natural selection, geographical haplotype clustering and inter-population genetic differentiation index.

  19. Mu AK, Bee PC, Lau YL, Chen Y
    Int J Mol Sci, 2014;15(11):19952-61.
    PMID: 25372941 DOI: 10.3390/ijms151119952
    Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals.
  20. De Silva JR, Lau YL, Fong MY
    PLoS ONE, 2014;9(9):e108951.
    PMID: 25268233 DOI: 10.1371/journal.pone.0108951
    The Duffy blood group is of major interest in clinical medicine as it plays an important role in Plasmodium knowlesi and Plasmodium vivax infection. In the present study, the distribution of Duffy blood group genotypes and allelic frequencies among P. knowlesi infected patients as well as healthy individuals in Peninsular Malaysia were determined. The blood group of 60 healthy blood donors and 51 P. knowlesi malaria patients were genotyped using allele specific polymerase chain reaction (ASP-PCR). The data was analyzed using Fisher's exact test in order to assess the significance of the variables. Our results show a high proportion of the FY*A/FY*A genotype (>85% for both groups) and a high frequency of the FY*A allele (>90% for both groups). The FY*A/FY*A genotype was the most predominant genotype in both infected and healthy blood samples. The genotype frequency did not differ significantly between the donor blood and the malaria patient groups. Also, there was no significant correlation between susceptibility to P. knowlesi infection with any Duffy blood genotype.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links