The bulking treatment with phenolic resin is well known as a treatment to improve the properties of low density wood but high amount of formaldehyde emission will be released during and after treatment. A study was conducted to determine the performance of phenolic resin treated sesenduk (Endospermum diadenum) wood post treated with ammonium carbonate and urea. Wood strips were treated separately with 30% low molecular weight phenol formaldehyde resin (LmwPF) resin and mixture of LmwPF with urea (30% based on solid PF) using empty-cell process. Two products were produced from the treatment, i.e. impreg and compreg. After conditioning, the surfaces of the samples were applied with ammonium carbonate solution at 10, 20 and 30 g/m2 . The samples were then stacked and stored at 60°C for 48 h. Properties such as formaldehyde emission, strength and dimensional stability were evaluated. The results showed that the post treatment with ammonium carbonate has successfully reduced the formaldehyde emission from the sesenduk wood. The degree of reduction was depended on the amount of ammonium carbonate applied on the samples. The results also showed that the sesenduk wood treated with mixture of PF and urea had lower formaldehyde emission. Post treatment with ammonium carbonate did not significantly affect the physical and mechanical properties of the sesenduk wood.
In this study, the effects of addition of ammonium and aluminium-based hardeners into
urea formaldehyde resin (UF) on the physico-mechanical properties and formaldehyde
emission of the rubberwood particleboard were investigated. Four types of hardeners,
namely ammonium chloride (AC), ammonium sulphate (AS), aluminium chloride (AlC)
and aluminium sulphate (AlS), were added into UF resin. The acidity, gelation time,
viscosity and free formaldehyde content of the UF/hardener mixtures were determined.
Particleboard made with the UF/hardener mixtures were tested for physico-mechanical
properties and formaldehyde emission. The pH values of the resin after addition of
aluminium-based hardeners were higher and resulted in higher viscosity and shorter
gelation time. Consequently, despite lower formaldehyde emission was recorded, the
physico-mechanical properties of the resulted particleboard were inferior compared to
that of ammonium-based hardeners. The best quality particleboard in terms of mechanical,
physical and formaldehyde emission were obtained from the particleboard made with AS,
followed by AC.
This research investigated the behaviour of walls produced from wood wool cement board (WWCB) which were reinforced
with a lesser known commercial timber, Kelempayan, when subjected to compression load. Kelempayan timbers were
shredded into wood wool and used as reinforcement agent in this study. WWCB having dimensions of 600 × 2400 × 50 mm
and 600 × 2400 × 75 mm, respectively, were fabricated. Properties of the WWCB samples, namely swelling, bending and
compression strength were tested. 75 mm WWCB has higher fracture toughness but lower strength compared to 50 mm
WWCB. Four types of wall systems with different type of configuration were produced and the test results were compared
focusing on their value of ultimate load and failure mode. Walls that constructed without application of link and plaster
displayed the poorest performance. Plastered and linked wall had the highest ultimate load and comparable with other
load bearing walls. The results suggested that walls constructed using WWCB reinforced with Kelempayan wood wool
are suitable for load bearing as they exhibited comparable properties when compared to the other load bearing walls
such as masonry and straw bale wall.
Plant fibers have become a highly sought-after material in the recent days as a result of raising environmental awareness and the realization of harmful effects imposed by synthetic fibers. Natural plant fibers have been widely used as fillers in fabricating plant-fibers-reinforced polymer composites. However, owing to the completely opposite nature of the plant fibers and polymer matrix, treatment is often required to enhance the compatibility between these two materials. Interfacial adhesion mechanisms are among the most influential yet seldom discussed factors that affect the physical, mechanical, and thermal properties of the plant-fibers-reinforced polymer composites. Therefore, this review paper expounds the importance of interfacial adhesion condition on the properties of plant-fiber-reinforced polymer composites. The advantages and disadvantages of natural plant fibers are discussed. Four important interface mechanism, namely interdiffusion, electrostatic adhesion, chemical adhesion, and mechanical interlocking are highlighted. In addition, quantifying and analysis techniques of interfacial adhesion condition is demonstrated. Lastly, the importance of interfacial adhesion condition on the performances of the plant fiber polymer composites performances is discussed. It can be seen that the physical and thermal properties as well as flexural strength of the composites are highly dependent on the interfacial adhesion condition.
Two ticks were collected from a reticulated python (Malayopython reticulatus) caught in Tumpat District, Kelantan, Peninsular Malaysia. The ticks were first identified as Ambylomma sp. through morphological comparison with identification keys. Determination of the tick species was made through PCR and sequencing. However, BLAST analysis revealed 85-88% sequence nucleotide identity with Amblyomma nitidum and Amblyomma geoemydae. Additionally, the morphological features of the ticks collected in this study did not match either A. nitidum or A. geoemydae. Further examination of the ticks confirmed the species as Amblyomma cordiferum. This is the first record of A. cordiferum DNA sequence with morphological support of colour illustrations for adult A. cordiferum. This is also the most recent record of this host association in Peninsular Malaysia. Information from this report can serve as a reference for species identification using the described morphology or molecular sequences.
Oil palm empty fruit bunch (EFB) is the most significant waste generated from the agricultural industry in Malaysia. Composting is one of the potential approaches to utilize EFB. However, composting of EFB is a time-consuming process, thus impractical for industrial application. The composting process can be shortened by introducing competent fungi into an optimal EFB composting system. This study was conducted to isolate and identify competent fungi that can naturally compost EFB. Samplings were carried out at eight different time points over a 20-weeks experimental period. The physical properties of EFB samples such as pH, residual oil content, and moisture content were measured and the EFB composting process that was indicated by the contents of cellulose, hemicellulose, and lignin were assessed. The fungal growth, distribution, and lignocellulolytic enzyme activities were evaluated. The results indicated that the changes in physical properties of EFB were correlated to the fungal growth. The gradual reduction in moisture content and residual oil, and the increment in pH values in EFB samples throughout the experimental period resulted in reduced fungal growth and diversity. Such phenomenon delayed EFB composting process as revealed by the changes in EFB lignin, hemicellulose, and cellulose contents. The most dominant and resilient fungi (Lichtheimia ramosa and Neurospora crassa) survived up to 16 weeks and were capable of producing various lignocellulolytic enzymes. Further understanding of these factors that would contribute to effective EFB composting could be useful for future industrial applications.
Carboxymethyl starch (CMS) was produced from sago starch via carboxymethylation. The CMS with different degree of substitution (DS) ranges from 0.4 to 0.8 were mixed with polyethylene glycol (PEG) of different molecular weight and distilled water and the hydrogel was cured by electron beam irradiation with doses ranging from 25 to 35 kGy. The results revealed that CMS-PEG hydrogels with DS 0.4 give the optimum gel content when radiated at 30 kGy and with PEG 600. Thermogravimetric analysis (TGA) revealed that there are two phases exist in CMS with DS 0.4 in contrast to the three steps decomposition occurs in DS 0.6 and 0.8. It shows that the CMS with DS 0.4 is more thermally stable. Surface morphology revealed crosslinking among the blends when subjected into the radiation dose. The study shows both radiation and PEG addition improved most of the properties of CMS irrespective of the DS value.
Mechanical strength, thermal conductivity and electrical breakdown of polypropylene/lignin/kenaf core fiber (PP/L/KCF) composite were studied. PP/L, PP/KCF and PP/L/KCF composites with different fiber and lignin loading was prepared using a compounding process. Pure PP was served as control. The results revealed that tensile and flexural properties of the PP/L/KCF was retained after addition of lignin and kenaf core fibers. Thermal stability of the PP composites improved compared to pure PP polymer. As for thermal conductivity, no significant difference was observed between PP composites and pure PP. However, PP/L/KCF composite has higher thermal diffusivity. All the PP composites produced are good insulating materials that are suitable for building. All PP composites passed withstand voltage test in air and oil state as stipulated in IEC 60641-3 except PP/L in oil state. SEM micrograph showed that better interaction and adhesion between polymer matrix, lignin and kenaf core fibers was observed and reflected on the better tensile strength recorded in PP/L/KCF composite. This study has successfully filled the gap of knowledge on using lignin and kenaf fibers as PP insulator composite materials. Therefore, it can be concluded that PP/Lignin/KCF has high potential as an insulating material.
In this review, the potential of natural fiber and kenaf fiber (KF) reinforced PLA composite filament for fused deposition modeling (FDM) 3D-printing technology is highlighted. Additive manufacturing is a material-processing method in which the addition of materials layer by layer creates a three-dimensional object. Unfortunately, it still cannot compete with conventional manufacturing processes, and instead serves as an economically effective tool for small-batch or high-variety product production. Being preformed of composite filaments makes it easiest to print using an FDM 3D printer without or with minimum alteration to the hardware parts. On the other hand, natural fiber-reinforced polymer composite filaments have gained great attention in the market. However, uneven printing, clogging, and the inhomogeneous distribution of the fiber-matrix remain the main challenges. At the same time, kenaf fibers are one of the most popular reinforcements in polymer composites. Although they have a good record on strength reinforcement, with low cost and light weight, kenaf fiber reinforcement PLA filament is still seldom seen in previous studies. Therefore, this review serves to promote kenaf fiber in PLA composite filaments for FDM 3D printing. To promote the use of natural fiber-reinforced polymer composite in AM, eight challenges must be solved and carried out. Moreover, some concerns arise to achieve long-term sustainability and market acceptability of KF/PLA composite filaments.
Kelantan is a chiefly agrarian state with abundant small-holder ruminant farms in the East Coast economic Region of Malaysia. Ectoparasitism affects small ruminant production in Malaysia. It often causes reduction in meat quality and milk production which affect the farmers' income. To date, no report for the prevalence of ectoparasitism on small ruminant in Kelantan compared to other state in Malaysia. This study aims to determine the prevalence and associated risk factor of ruminant ectoparasitism in Kelantan. Ectoparasites were collected by manual picking and skin scrapping from 462 sheep and goats in Kelantan between April and September 2017 (during dry season). 60% of the sampled animals were infested with at least one species of the ectoparasites. In this study, lice and ticks were the most prevalent ectoparasites on small ruminant, which were 43.64% and 22.98%, respectively. The high biotic potential of lice population on host might be one of the factors they become the most prevalent species found on the animals. There was no significant relationship between ectoparasitism prevalence and species of small ruminants (χ2 = 1.12, p = 0.293). However, there was significant variations in prevalence between the regions where the animals were sampled from (χ2 = 30.25, p = 0.002) and farm management system for both species. This present study provides baseline epidemiological data on the prevalence of ectoparasitism in small ruminant. This information is useful for the formulation of prevention and control measures in order to enhance ruminant productivity in Kelantan.
In this study, the effects of lignin modification on the properties of kenaf core fiber reinforced poly(butylene succinate) biocomposites were examined. A weight percent gain (WPG) value of 30.21% was recorded after the lignin were modified with maleic anhydride. Lower mechanical properties were observed for lignin composites because of incompatible bonding between the hydrophobic matrix and the hydrophilic lignin. Modified lignin (ML) was found to have a better interfacial bonding, since maleic anhydrides remove most of the hydrophilic hydrogen bonding (this was proven by a Fourier-transform infrared (FTIR) spectrometer-a reduction of broadband near 3400 cm-1, corresponding to the -OH stretching vibration of hydroxyl groups for the ML samples). On the other hand, ML was found to have a slightly lower glass transition temperature, Tg, since reactions with maleic anhydride destroy most of the intra- and inter-molecular hydrogen bonds, resulting in a softer structure at elevated temperatures. The addition of kraft lignin was found to increase the thermal stability of the PBS polymer composites, while modified kraft lignin showed higher thermal stability than pure kraft lignin and possessed delayed onset thermal degradation temperature.
The study investigated the effects of the addition of starch on the properties of oil palm biomass particleboard bonded with citric acid. Three kinds of oil palm biomasses were used in this study for the fabrication of particleboard, namely, oil palm frond (OPF), oil palm trunk (OPT), and empty fruit bunch (EFB) particles. Citric acid and tapioca starch at the mixing ratios of 100:0, 87.5:12.5, and 75:25 were prepared at a 60% solid content. A 30% resin content based on the oven-dried weight of the oil palm biomass particles was used. The sprayed particles were pre-dried at 80 °C for 12 h before being hot-pressed at 180 °C and 4 MPa pressure for 10 min. The physical and mechanical properties of the particleboard were evaluated. The mixtures of citric acid and tapioca starch were characterized by thermogravimetric analysis (TGA). Thermal stability of citric acid was reduced after the addition of tapioca starch. The addition of 12.5% tapioca starch improved the bending strength of the particleboard but increased the thickness swelling slightly. All UF-bonded particleboard exhibited significantly inferior performance than that of citric-acid-bonded particleboard. Citric-acid-bonded particleboard maintained its original shape after being subjected to a cyclic-aging treatment, while the UF-bonded particleboard disintegrated half way through the treatment. The performance of EFB particleboard was significantly inferior to its OPT and OPF counterparts.
Pull-off strength is an important property of solid wood, influencing the quality of paints and finishes in the modern furniture industry, as well as in historical furniture and for preservation and restoration of heritage objects. The thermal modification and heat treatment of solid wood have been the most used commercial wood modification techniques over the past decades globally. The effects of heat treatment at two mild temperatures (145 and 185 °C) on the pull-off strength of three common solid wood species, i.e., common beech (Fagus sylvatica L.), black poplar (Populus nigra L.), and silver fir (Abies alba Mill.), were studied in the present research work. The specimens were coated with an unpigmented sealer-clear finish based on an organic solvent. The results demonstrated a positive correlation between the density and pull-off strength in the solid wood species. Heat treatment at 145 °C resulted in an increase in the pull-off strength in all three species, due to the formation of new bonds in the cell-wall polymers. Thermal degradation of the polymers at 185 °C weakened the positive effect of the formation of new bonds, resulting in a largely unchanged pull-off strength in comparison with the control specimens. Impregnation with a silver nano-suspension decreased the pull-off strength in beech specimens. It was concluded that density is the decisive factor in determining the pull-off strength, having a significant positive correlation (R-squared value of 0.89). Heat treatment at lower temperatures is recommended, to increase pull-off strength. Higher temperatures can have a decreasing effect on pull-off strength, due to the thermal degradation of cell-wall polymers.
A flame retardant high-performance gelatinized starch (GS)-ammonium dihydrogen phosphate (ADP) wood adhesive, named GS-ADP adhesive was prepared by condensation of GS and ADP under acidic condition. The preparation process of GS-ADP adhesive is very simple by mixing and stirring GS and ADP evenly at room temperature. The results revealed that the GS-ADP adhesive has good storage stability and water resistance, and its wet shear strength is much higher than that of phenolic resin (PF) adhesive. Markedly, the cone calorimeter test results show that G-ADP adhesive has good flame retardancy, and the plywood based on GS-ADP adhesive has good flame retardancy. Meanwhile, it can be seen from dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) that GS-ADP has excellent modulus of elasticity (MOE), high glass transition temperature (Tg) and good thermal stability. The findings suggest that GS-ADP could be a viable substitute for PF resin in structural wood fabrication.
Oil palm empty fruit bunch (OPEFB) is considered the cheapest natural fiber with good properties and exists abundantly in Malaysia. It has great potential as an alternative main raw material to substitute woody plants. On the other hand, the well-known polymeric hydrogel has gathered a lot of interest due to its three-dimensional (3D) cross-linked network with high porosity. However, some issues regarding its performance like poor interfacial connectivity and mechanical strength have been raised, hence nanocellulose has been introduced. In this review, the plantation of oil palm in Malaysia is discussed to show the potential of OPEFB as a nanocellulose material in hydrogel production. Nanocellulose can be categorized into three nano-structured celluloses, which differ in the processing method. The most popular nanocellulose hydrogel processing methods are included in this review. The 3D printing method is taking the lead in current hydrogel production due to its high complexity and the need for hygiene products. Some of the latest advanced applications are discussed to show the high commercialization potential of nanocellulose hydrogel products. The authors also considered the challenges and future direction of nanocellulose hydrogel. OPEFB has met the requirements of the marketplace and product value chains as nanocellulose raw materials in hydrogel applications.
Sepiolite is a silicate mineral that improves the fire properties in solid wood when mixed with a water-based coating. The present study was carried out to investigate and evaluate the effects of sepiolite addition to acrylic-latex paint on the pull-off adhesion strength, as an important characteristic of paints and finishes used in the modern furniture industry and historical furniture as well for preservation and restoration of heritage objects. Sepiolite was added at the rate of 10%, and brushed onto plain-sawn beech (Fagus orientalis L.) wood specimens, unimpregnated and impregnated with a 400 ppm silver nano-suspension, which were further thermally modified at 185 °C for 4 h. The results showed that thermal modification had a decreasing effect on the pull-off adhesion strength, primarily as a result of the thermal degradation of cell-wall polymers (mostly hemicelluloses). Still, a decreased wettability as a result of condensation and plasticization of lignin was also partially influential. Based on the obtained results,thermal modification was found to have a significant influence on pull-off adhesion strength. Sepiolite addition had a decreasing effectin all treatments, though the effect was not statistically significant in all treatments. The maximum and minimum decreases due to sepiolite addition were observed in the unimpregnated control (21%) and the thermally-modified NS-impregnated (4%) specimens. Other aspects of the sepiolite addition, and further studies that cover different types of paints and coatings, should be evaluated before coming to a final firm conclusion in this regard.
In this study, various chitosan-based films such as chitosan (C), chitosan-condensed tannin (CT), chitosan-casein (CC), and chitosan-casein-condensed tannin (CCT) films were prepared for the purpose of food packaging. In order to improve the hydrophobicity of these films, carnauba wax was blended into CCT to produce CCTW film. Properties such as morphology, UV resistance, water solubility, barrier performance, tensile strength, antioxidant, antibacterial and its performance as food packaging were evaluated. Compared with other chitosan-based films, CCTW films exhibited higher UV resistance, tensile strength, thermal stability and hydrophobicity. The addition of both condensed tannin and carnauba wax has significantly decreased the water vapor and oxygen permeability of the CCTW films. The CCTW films were proved capable of repelling most daily consuming liquids. Besides, CCTW films displayed outstanding free radical scavenging rate and antibacterial properties. Meanwhile, bananas wrapped with CCTW films remained fresh for seven days without any mold growth and outperformed other types of films. Apart from that, the CCTW films also showed biodegradable characteristics after exposure to Penicillium sp. These distinguished characteristics made the CCTW films a promising packaging material for long-term food storage.
Since ancient Egypt, orthosis was generally made from wood and then later replaced with metal and leather which are either heavy, bulky, or thick decreasing comfort among the wearers. After the age of revolution, the manufacturing of products using plastics and carbon composites started to spread due to its low cost and form-fitting feature whereas carbon composite were due to its high strength/stiffness to weight ratio. Both plastic and carbon composite has been widely applied into medical devices such as the orthosis and prosthesis. However, carbon composite is also quite expensive, making it the less likely material to be used as an Ankle-Foot Orthosis (AFO) material whereas plastics has low strength. Kenaf composite has a high potential in replacing all the current materials due to its flexibility in controlling the strength to weight ratio properties, cost-effectiveness, abundance of raw materials, and biocompatibility. The aim of this review paper is to discuss on the possibility of using kenaf composite as an alternative material to fabricate orthotics and prosthetics. The discussion will be on the development of orthosis since ancient Egypt until current era, the existing AFO materials, the problems caused by these materials, and the possibility of using a Kenaf fiber composite as a replacement of the current materials. The results show that Kenaf composite has the potential to be used for fabricating an AFO due to its tensile strength which is almost similar to polypropylene's (PP) tensile strength, and the cheap raw material compared to other type of materials.
Citric acid (CA) can be found naturally in fruits and vegetables, particularly citrus fruit. CA is widely used in many fields but its usage as a green modifying agent and binder for wood is barely addressed. Esterification is one of the most common chemical reactions applied in wood modification. CA contains three carboxyl groups, making it possible to attain at least two esterification reactions that are required for crosslinking when reacting with the hydroxyl groups of the cell wall polymers. In addition, the reaction could form ester linkages to bring adhesivity and good bonding characteristics, and therefore CA could be used as wood binder too. This paper presents a review concerning the usage of CA as a wood modifying agent and binder. For wood modification, the reaction mechanism between wood and CA and the pros and cons of using CA are discussed. CA and its combination with various reactants and their respective optimum parameters are also compiled in this paper. As for the major wood bonding component, the bonding mechanism and types of wood composites bonded with CA are presented. The best working conditions for the CA in the fabrication of wood-based panels are discussed. In addition, the environmental impacts and future outlook of CA-treated wood and bonded composite are also considered.
In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.