Displaying publications 1 - 20 of 39 in total

  1. Zhang Y, Waiho K, Ikhwanuddin M, Ma H
    Animals (Basel), 2021 Jun 29;11(7).
    PMID: 34209957 DOI: 10.3390/ani11071946
    Crabs within the family Portunidae are important marine species in both aquaculture and fishery sectors. The current aquaculture status of most portunids, however, still relies on wild-caught fisheries due to the lack of essential knowledge regarding their reproductive biology and underlying governing mechanism. With the advancement of sequencing technology, transcriptome sequencing has been progressively used to understand various physiological processes, especially on non-model organisms. In the present study, we compared the differentially expressed genes (DEGs) between sexes of Portunus sanguinolentus based on their gonadal transcriptome profiles and subsequently contrasted them with the gonadal DEGs of Charybdis feriatus, the other member of Family Portunidae. In total, 40,964 DEGs between ovaries and testes were uncovered, with 27,578 up- and 13,386 down-regulated in females. Among those, some sex-related DEGs were identified, including a dmrt-like (DMRT) gene which was specifically expressed in males. C. feriatus has approximately 63.5% of genes common with P. sanguinolentus, with 62.6% showing similar expression patterns. Interestingly, the DMRT gene was specifically expressed in male P. sanguinolentus while its homologous gene-doublesex (DSX)-was specifically expressed in male C. feriatus. The DEGs obtained from the gonadal transcriptome of P. sanguinolentus are a beneficial resource for future genetic and genomic research in P. sanguinolentus and its close species. The transcriptomic comparison analysis might provide references for better understanding the sex determination and differentiation mechanisms among portunids.
  2. Qiu B, Fang S, Ikhwanuddin M, Wong L, Ma H
    Mol Biol Rep, 2020 Apr;47(4):3011-3017.
    PMID: 32124169 DOI: 10.1007/s11033-020-05348-z
    In this study, we first conducted a genome survey assay for Sillago sihama by Illumina sequencing platform, and then developed 15 polymorphic microsatellite loci in a wild population. A total of 129.46 Gb raw data were obtained, of which 115.07 Gb were clean data, with a sequencing depth of 179.3-folds. This genome was estimated to be 522.6 Mb in size, with the heterozygosity, repeat content and GC content being 0.63%, 21% and 44%. A total of 630,028 microsatellites were identified from the genome, of which, dinucleotide repeat was the most abundant (56.80%), followed by mononucleotide repeat (30.23%). Furthermore, 60 pairs of primers were designed and synthesized based on microsatellite sequences, of which 15 were polymorphic in a wild population. A total of 91 alleles were found, with an average of 6.07 per locus. Number of alleles, observed and expected heterozygosity per locus ranged from two to 13, from 0.250 to 0.862, and from 0.396 to 0.901, respectively. Twelve loci were highly informative (PIC > 0.5), and the others were medium informative (0.25 
  3. Sukiran NL, Ma JC, Ma H, Su Z
    Plant Mol Biol, 2019 Jan;99(1-2):161-174.
    PMID: 30604322 DOI: 10.1007/s11103-018-0810-1
    KEY MESSAGE: Morphological and transcriptomic evidences provide us strong support for the function of ANAC019 in reproductive development under drought stress. Plants are sensitive to drought conditions, particularly at the reproductive stage. Several studies have reported drought effects on crop reproductive development, but the molecular mechanism underlying drought response during reproduction is still unclear. A recent study showed that drought induces in Arabidopsis inflorescence increased expression of many genes, including ANAC019. However, the function of ANAC019 in drought response during reproductive development has not been characterized. Here, we report an investigation of the ANAC019 function in the response to drought during reproduction. ANAC019 is preferentially expressed in the inflorescence compared with the leaf, suggesting possible roles in regulating both stress response and flower development. The anac019 mutant was more sensitive to drought than WT plant, and exhibited a delay in recovery of floral organ development under prolonged drought stress. Moreover, many fewer genes were differentially expressed in the anac019 inflorescence under drought than that of WT, suggesting that the mutant was impaired in drought-induced gene expression. The genes affected by ANAC019 were associated with stress and hormone responses as well as floral development. In particular, the expression levels of several key drought-induced genes, DREB2A, DREB2B, ARF2, MYB21 and MYB24, were dramatically reduced in the absence of ANAC019, suggesting that ANAC019 is an upstream regulator these genes for drought response and flower development. These results provide strong support for the potential function of ANAC019 in reproductive development under drought stress.
  4. Pillai P, Mitchell PJ, Phan TG, Ma H, Yan B
    Cerebrovasc Dis, 2023;52(3):353-362.
    PMID: 36423598 DOI: 10.1159/000526873
    BACKGROUND: Extensive randomized controlled clinical trials for endovascular thrombectomy in anterior circulation large vessel occlusions (internal carotid arteries and M1 segment of middle cerebral arteries) have been published over the past decade, but there have not been randomized controlled trials for distal arterial occlusions to date. Distal arterial occlusion randomized controlled trials are essential to decide on patient selection, imaging criteria, and endovascular approach to improve the outcome and reduce complications.

    SUMMARY: The definition of distal arterial occlusion is however unclear, and we believe that a uniform nomenclature of distal arterial occlusions is essential for the design of robust randomized controlled studies. We undertook a systematic literature review and comprehensive analysis of 70 articles looking at distal arterial occlusions and previous attempts at classifying them as well as comparing their similarities and differences with a more selective look at the middle cerebral artery. Thirty-two articles were finally deemed suitable and included for this review. In this review article, we present 3 disparate classifications of distal arterial occlusions, namely, classical/anatomical, functional/imaging, and structural/calibre, and compare the similarities and differences between them.

    KEY MESSAGES: We propose the adoption of functional/imaging classification to guide the identification of distal arterial occlusions with the M2 segment starting at the point of bifurcation of the middle cerebral artery trunk/M1 segment. With regards to the anterior temporal artery, we propose that it will be considered a branch of the M1 and only be considered as the M2 segment if it is a holo-temporal artery. We believe that this is a practical method of classification in the time-critical decision-making period.

  5. Fazhan H, Waiho K, Fujaya Y, Rukminasari N, Ma H, Ikhwanuddin M
    PeerJ, 2021;9:e10936.
    PMID: 33954025 DOI: 10.7717/peerj.10936
    Sexual dimorphism is a common phenomenon in the animal kingdom. To test the consistency of sexual dimorphism patterns among sympatric species of the same genus, ten morphometric characteristics of mud crabs Scylla olivacea, S. tranquebarica and S. paramamosain were measured and compared using Discriminant Function Analysis (DFA). The descriptive analysis revealed that in all three species, body size dimensions and cheliped dimensions were significantly larger in males whereas the abdomen width was female-biased. Also, we described a morphological variation (carapace width, CW ≤ CW at spine 8, 8CW) that is unique to S. olivacea. Discriminant function analysis revealed that all nine morphometric characteristics were sexually dimorphic in S. olivacea, S. tranquebarica (except right cheliped's merus length, ML) and S. paramamosain (except 8CW). The obtained discriminant functions based on the morphometric ratios (with CW as divisor) correctly classified 100% of adults of known sex of all three species. Further, based on the selected body traits, DFA was able to almost completely distinguish males (94%), but not females (74%), among the three Scylla species. This study highlights that congeneric species of portunids (e.g., Scylla spp.) show similar sexually dimorphic characteristics (body size and secondary sexual characteristics).
  6. Guan M, Tan H, Fazhan H, Xie Z, Shi X, Zhang Y, et al.
    Mitochondrial DNA B Resour, 2018 Oct 26;3(2):1244-1245.
    PMID: 33474478 DOI: 10.1080/23802359.2018.1532345
    The mitochondrial genome plays an important role in studies on phylogeography and population genetic diversity. Here we report the complete mitochondrial genome of Lupocycloporus gracilimanus (Stimpson, 1858) which is the first mitochondrial genome reported in genus Lupocycloporus by now. The mitogenome is 15,990 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a putative control region. The phylogenetic analysis showed that L. gracilimanus was closest to genus Scylla. The present research should provide valuable information for phylogenetic analysis and classification of Portunidae.
  7. Xie Z, Tan H, Lin F, Guan M, Waiho K, Fang S, et al.
    Mitochondrial DNA B Resour, 2018 Mar 27;3(1):397-398.
    PMID: 33474181 DOI: 10.1080/23802359.2018.1456374
    The complete mitochondrial genome sequence of Atergatis integerrimus from China has been amplified and sequenced in this study. The mitogenome assembly was found to be 15,924 bp in length with base composition of A (32.88%), G (10.58%), C (20.87%), T (35.66%), A + T (68.54%), and G + C (31.46%). It contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a control region. The phylogenetic position was constructed and the A. integerrimus was closely clustered with Pseudocarcinus gigas and Leptodius sanguineus. The complete mitochondrial genome sequence would be useful for further understanding the evolution of A. integerrimus.
  8. Guan M, Liu X, Lin F, Xie Z, Fazhan H, Ikhwanuddin M, et al.
    Mitochondrial DNA B Resour, 2018 Mar 14;3(1):368-369.
    PMID: 33490509 DOI: 10.1080/23802359.2018.1450685
    In this study, we sequenced and analyzed the whole mitochondrial genome of Metopograpsus frontalis Miers, 1880 (Decapoda, Grapsidae). The circular genome is 15,587 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, as well as a control region. Both atp8/atp6 and nad4L/nad4 share 7 nucleotides in their adjacent overlapping region, which is identical to those observed in other Grapsidae crabs. The genome composition and gene order follow a classic crab-type arrangement regulation. The phylogenetic analysis suggested that Grapsidae crabs formed a solid monophyletic group. The newly described mitochondrial genome may provide genetic marker for studies on phylogeny of the grapsid crabs.
  9. Waiho K, Fazhan H, Zhang Y, Zhang Y, Li S, Zheng H, et al.
    Mar Biotechnol (NY), 2019 Jun;21(3):320-334.
    PMID: 30835008 DOI: 10.1007/s10126-019-09882-1
    Although the sexual dimorphism in terms of gonadal development and gametogenesis of mud crab has been described, the internal regulating mechanism and sex differentiation process remain unclear. A comparative gonadal miRNA transcriptomic study was conducted to identify miRNAs that are differentially expressed between testes and ovaries, and potentially uncover miRNAs that might be involved in sex differentiation and gonadal maturation mechanisms of mud crabs (Scylla paramamosain). A total of 10 known miRNAs and 130 novel miRNAs were identified, among which 54 were differentially expressed. Target gene prediction revealed a significant enrichment in 30 KEGG pathways, including some reproduction-related pathways, e.g. phosphatidylinositol signalling system and inositol phosphate metabolism pathways. Further analysis on six differentially expressed known miRNAs, six differentially expressed novel miRNAs and their reproduction-related putative target genes shows that both miRNAs and putative target genes showed stage-specific expression during gonadal maturation, suggesting their potential regulatory roles in sex differentiation and reproductive development. This study reveals the sex-biased miRNA profile and establishes a solid foundation for understanding the sex differentiation and gonadal maturation mechanisms of S. paramamosain.
  10. Zhang Y, Wu Q, Fang S, Li S, Zheng H, Zhang Y, et al.
    BMC Genomics, 2020 Aug 14;21(1):559.
    PMID: 32795331 DOI: 10.1186/s12864-020-06965-5
    BACKGROUND: Mud crab, Scylla paramamosain, a euryhaline crustacean species, mainly inhabits the Indo-Western Pacific region. Wild mud crab spawn in high-salt condition and the salinity reduced with the growth of the hatching larvae. When the larvae grow up to megalopa, they migrate back to estuaries and coasts in virtue of the flood tide, settle and recruit adult habitats and metamorphose into the crablet stage. Adult crab can even survive in a wide salinity of 0-35 ppt. To investigate the mRNA profile after salinity stress, S. paramamosain megalopa were exposed to different salinity seawater (low, 14 ppt; control, 25 ppt; high, 39 ppt).

    RESULTS: Firstly, from the expression profiles of Na+/K+/2Cl- cotransporter, chloride channel protein 2, and ABC transporter, it turned out that the 24 h might be the most influenced duration in the short-term stress. We collected megalopa under different salinity for 24 h and then submitted to mRNA profiling. Totally, 57.87 Gb Clean Data were obtained. The comparative genomic analysis detected 342 differentially expressed genes (DEGs). The most significantly DEGs include gamma-butyrobetaine dioxygenase-like, facilitated trehalose transporter Tret1, sodium/potassium-transporting ATPase subunit alpha, rhodanese 1-like protein, etc. And the significantly enriched pathways were lysine degradation, choline metabolism in cancer, phospholipase D signaling pathway, Fc gamma R-mediated phagocytosis, and sphingolipid signaling pathway. The results indicate that in the short-term salinity stress, the megalopa might regulate some mechanism such as metabolism, immunity responses, osmoregulation to adapt to the alteration of the environment.

    CONCLUSIONS: This study represents the first genome-wide transcriptome analysis of S. paramamosain megalopa for studying its stress adaption mechanisms under different salinity. The results reveal numbers of genes modified by salinity stress and some important pathways, which will provide valuable resources for discovering the molecular basis of salinity stress adaptation of S. paramamosain larvae and further boost the understanding of the potential molecular mechanisms of salinity stress adaptation for crustacean species.

  11. Farhadi A, Fang S, Zhang Y, Cui W, Fang H, Ikhwanuddin M, et al.
    Int J Biol Macromol, 2021 Jul 31;183:490-501.
    PMID: 33957197 DOI: 10.1016/j.ijbiomac.2021.04.186
    The wingless-type MMTV integration site family member-4 (Wnt4), a member of the wingless-related integration site (Wnt) family, is widely accepted as a key regulator of ovarian development in mammals. In this study, a full-length cDNA of Wnt4 (designated as Sp-Wnt4) was cloned, characterized, and functionally studied in mud crab (Scylla paramamosain). The full-length cDNA of Sp-Wnt4 consists of 2659 bp with an open reading frame (ORF) encoding 359 amino acids, a 907 bp 5'-UTR and a 672 bp 3'-UTR. Sp-Wnt4 contains 25 cysteine (Cys) residues and three potential N-glycosylation sites. Sp-Wnt4 protein shared the highest identity (98.9%) to the Wnt4 protein of Portunus trituberculatus. The phylogenetic tree showed that Sp-Wnt4 and Wnt4 protein of Malacostracan crustaceans clustered together, indicating that they had a close genetic distance. Sp-Wnt4 was expressed at a higher level in the ovary compared to other tissues, with the highest expression level at the third stage (O-III) of the ovarian development (P < 0.05). A downward trend was observed in the expression level of Sp-Wnt4 from the embryo stage to crablet stages (P < 0.05). After unilateral eyestalk ablation, the expression level of Sp-Wnt4 significantly increased in testis (14-fold) and downregulated (3.1-fold) in the gill (P < 0.05) of females. In situ hybridization (ISH) assay revealed that Sp-Wnt4 transcripts were mainly localized in the cytoplasm of oocyte cells. These findings showed that Sp-Wnt4 play crucial roles in the ovarian development of S. paramamosain. In conclusion, our study provides novel insights into the evolution and roles of the Wnt4 gene.
  12. Zhang Y, Miao G, Fazhan H, Waiho K, Zheng H, Li S, et al.
    Physiol. Genomics, 2018 05 01;50(5):393-405.
    PMID: 29570432 DOI: 10.1152/physiolgenomics.00016.2018
    The crucifix crab, Charybdis feriatus, which mainly inhabits Indo-Pacific region, is regarded as one of the most high-potential species for domestication and incorporation into the aquaculture sector. However, the regulatory mechanisms of sex determination and differentiation of this species remain unclear. To identify candidate genes involved in sex determination and differentiation, high throughput sequencing of transcriptome from the testis and ovary of C. feriatus was performed by the Illumina platform. After removing adaptor primers, low-quality sequences and very short (<50 nt) reads, we obtained 80.9 million and 66.2 million clean reads from testis and ovary, respectively. A total of 86,433 unigenes were assembled, and ~43% (37,500 unigenes) were successfully annotated to the NR, NT, Swiss-Prot, KEGG, COG, GO databases. By comparing the testis and ovary libraries, we obtained 27,636 differentially expressed genes. Some candidate genes involved in the sex determination and differentiation of C. feriatus were identified, such as vasa, pgds, vgr, hsp90, dsx-f, fem-1, and gpr. In addition, 88,608 simple sequence repeats were obtained, and 61,929 and 77,473 single nucleotide polymorphisms from testis and ovary were detected, respectively. The transcriptome profiling was validated by quantitative real-time PCR in 30 selected genes, which showed a good consistency. The present study is the first high-throughput transcriptome sequencing of C. feriatus. These findings will be useful for future functional analysis of sex-associated genes and molecular marker-assisted selections in C. feriatus.
  13. Wu Q, Miao G, Li X, Liu W, Ikhwanuddin M, Ma H
    Mol Biol Rep, 2018 Dec;45(6):1913-1918.
    PMID: 30203240 DOI: 10.1007/s11033-018-4339-9
    The blue swimming crab (Portunus pelagicus) is a valuable marine fishery resource in Indo-West Pacific Ocean. So far, rare genetic resource of this species is available. In this report, the restriction-site associated DNA (RAD) approach was employed to mine the genomic information and identify molecular markers in P. pelagicus. A total of 0.82 Gbp clean data were generated from the genome of individual "X2A". De novo assembly produced 85,796 contigs with an average length of 339 bp. A total of 45,464 putative SNPs and 17,983 microsatellite loci were identified from the genomes of ten individuals. Furthermore, 31 pairs of primers were successfully designed, with 16 of them exhibiting polymorphism in a wild population. For these polymorphic loci, the expected and observed alleles per locus ranged from 1.064 to 7.314 and from 2 to 11, respectively. The expected and observed heterozygosity per locus ranged from 0.0615 to 0.819 and from 0.0626 to 1.000, respectively. Nine loci showed high informative with polymorphism information content (PIC) > 0.5. Five loci significantly deviated from Hardy-Weinberg equilibrium in the samples analyzed. No linkage disequilibrium was found among the 16 polymorphic microsatellite loci. This study provided massive genetic resource and polymorphic molecular markers that should be helpful for studies on conservation genetics, population dynamics and genetic diversity of P. pelagicus and related crab species.
  14. Tan K, Zhang H, Lim LS, Ma H, Li S, Zheng H
    Front Immunol, 2019;10:3041.
    PMID: 32010132 DOI: 10.3389/fimmu.2019.03041
    Carotenoids are biologically active pigments that are well-known to enhance the defense and immunity of the vertebrate system. However, in invertebrates, the role of carotenoids in immunity is not clear. Therefore, this study aims to review the scientific evidence for the role of carotenoids in invertebrate immunization. From the analysis of published literatures and recent studies from our laboratory, it is obvious that carotenoids are involved in invertebrate immunity in two ways. On the one hand, carotenoids can act as antioxidant enzymes to remove singlet oxygen, superoxide anion radicals, and hydroxyl radicals, thereby reducing SOD activity and reducing the cost of immunity. In some organisms, carotenoids have been shown to promote SOD activity by up-regulating the expression of the ZnCuSOD gene. Carotenoids, on the other hand, play a role in the expression and regulation of many genes involved in invertebrate immunity, including thioredoxins (TRX), peptidoglycan recognition receptor proteins (PGRPs), ferritins, prophenoloxidase (ProPO), vitellogenin (Vg), toll-like receptor (TLRs), heat shock proteins (HSPs), and CuZnSOD gene. The information in this review is very useful for updating our understanding of the progress of carotenoid research in invertebrate immunology and to help identify topics for future topics.
  15. Waiho K, Fazhan H, Zhang Y, Li S, Zhang Y, Zheng H, et al.
    Genomics, 2020 01;112(1):323-331.
    PMID: 30807818 DOI: 10.1016/j.ygeno.2019.02.012
    PIWI-interacting RNAs (piRNAs) are abundantly found in germ cells and involved in gametogenesis and gonadal development. Information on the regulatory roles of piRNAs in crustacean reproduction, however, is scarce. Thus, we identified gonadal piRNAs of mud crab Scylla paramamosain. Of the 115,491 novel piRNAs, 596 were differentially expressed. Subsequently, 389,887 potential piRNA-target genes were predicted. The expression of 4 piRNAs and 9 genes with high piRNA interactions were validated with the inclusion of additional immature specimens, including LRP2 that is involved in growth and reproduction, MDN1 in ribosome biogenesis pathway and gametogenesis, and PRKDC, a DNA repair gene involved in gonadal differentiation and maturation. KEGG analysis further revealed the involvement of predicted piRNA target genes in gametogenesis- and reproduction-related pathways. Our findings provide baseline information of mud crab piRNAs and their differential expression between testes and ovaries suggests that piRNAs play an essential role in regulating gametogenesis and gonadal development.
  16. Zheng Z, Aweya JJ, Bao S, Yao D, Li S, Tran NT, et al.
    J Immunol, 2021 12 01;207(11):2733-2743.
    PMID: 34670821 DOI: 10.4049/jimmunol.2100746
    Aquatic organisms have to produce proteins or factors that help maintain a stable relationship with microbiota and prevent colonization by pathogenic microorganisms. In crustaceans and other aquatic invertebrates, relatively few of these host factors have been characterized. In this study, we show that the respiratory glycoprotein hemocyanin is a crucial host factor that modulates microbial composition and diversity in the hepatopancreas of penaeid shrimp. Diseased penaeid shrimp (Penaeus vannamei), had an empty gastrointestinal tract with atrophied hepatopancreas, expressed low hemocyanin, and high total bacterial abundance, with Vibrio as the dominant bacteria. Similarly, shrimp depleted of hemocyanin had mitochondrial depolarization, increased reactive oxygen species (ROS) levels, and dysregulation of several energy metabolism-related genes. Hemocyanin silencing together with ROS scavenger (N-acetylcysteine) treatment improved microbial diversity and decreased Vibrio dominance in the hepatopancreas. However, fecal microbiota transplantation after hemocyanin knockdown could not restore the microbial composition in the hepatopancreas. Collectively, our data provide, to our knowledge, new insight into the pivotal role of hemocyanin in modulating microbial composition in penaeid shrimp hepatopancreas via its effect on mitochondrial integrity, energy metabolism, and ROS production.
  17. Yang F, Guo GZ, Chen JQ, Ma HW, Liu T, Huang DN, et al.
    Epidemiol Infect, 2014 Feb;142(2):225-33.
    PMID: 23587429 DOI: 10.1017/S0950268813000897
    A suspected dengue fever outbreak occurred in 2010 at a solitary construction site in Shenzhen city, China. To investigate this epidemic, we used serological, molecular biological, and bioinformatics techniques. Of nine serum samples from suspected patients, we detected seven positive for dengue virus (DENV) antibodies, eight for DENV-1 RNA, and three containing live viruses. The isolated virus, SZ1029 strain, was sequenced and confirmed as DENV-1, showing the highest E-gene homology to D1/Malaysia/36000/05 and SG(EHI)DED142808 strains recently reported in Southeast Asia. Further phylogenetic tree analysis confirmed their close relationship. At the epidemic site, we also detected 14 asymptomatic co-workers (out of 291) positive for DENV antibody, and DENV-1-positive mosquitoes. Thus, we concluded that DENV-1 caused the first local dengue fever outbreak in Shenzhen. Because no imported case was identified, the molecular fingerprints of the SZ1029 strain suggest this outbreak may be due to vertical transmission imported from Southeast Asia.
  18. Fang S, Zhang Y, Shi X, Zheng H, Li S, Zhang Y, et al.
    Genomics, 2020 01;112(1):404-411.
    PMID: 30851358 DOI: 10.1016/j.ygeno.2019.03.003
    In this study, we first identified male-specific SNP markers using restriction site-associated DNA sequencing, and further developed a PCR-based sex identification technique for Charybdis feriatus. A total of 296.96 million clean reads were obtained, with 114.95 and 182.01 million from females and males. After assembly and alignment, 10 SNP markers were identified being heterozygous in males but homozygous in females. Five markers were further confirmed to be male-specific in a large number of individuals. Moreover, two male-specific sense primers and a common antisense primer were designed, using which, a PCR-based genetic sex identification method was successfully developed and used to identify the sex of 103 individuals, with a result of 49 females and 54 males. The presence of male-specific SNP markers suggests an XX/XY sex determination system for C. feriatus. These findings should be helpful for better understanding sex determination mechanism, and drafting artificial breeding program in crustaceans.
  19. Waiho K, Shi X, Fazhan H, Li S, Zhang Y, Zheng H, et al.
    Front Genet, 2019;10:298.
    PMID: 31024620 DOI: 10.3389/fgene.2019.00298
    Mud crab, Scylla paramamosain is one of the most important crustacean species in global aquaculture. To determine the genetic basis of sex and growth-related traits in S. paramamosain, a high-density genetic linkage map with 16,701 single nucleotide polymorphisms (SNPs) was constructed using SLAF-seq and a full-sib family. The consensus map has 49 linkage groups, spanning 5,996.66 cM with an average marker-interval of 0.81 cM. A total of 516 SNP markers, including 8 female-specific SNPs segregated in two quantitative trait loci (QTLs) for phenotypic sex were located on LG32. The presence of female-specific SNP markers only on female linkage map, their segregation patterns and lower female: male recombination rate strongly suggest the conformation of a ZW/ZZ sex determination system in S. paramamosain. The QTLs of most (90%) growth-related traits were found within a small interval (25.18-33.74 cM) on LG46, highlighting the potential involvement of LG46 in growth. Four markers on LG46 were significantly associated with 10-16 growth-related traits. BW was only associated with marker 3846. Based on the annotation of transcriptome data, 11 and 2 candidate genes were identified within the QTL regions of sex and growth-related traits, respectively. The newly constructed high-density genetic linkage map with sex-specific SNPs, and the identified QTLs of sex- and growth-related traits serve as a valuable genetic resource and solid foundation for marker-assisted selection and genetic improvement of crustaceans.
  20. Lin F, Xie Z, Fazhan H, Baylon JC, Yang X, Tan H, et al.
    Mitochondrial DNA B Resour, 2018 Feb 23;3(1):263-264.
    PMID: 33474136 DOI: 10.1080/23802359.2018.1443043
    The complete mitochondrial genome plays an important role in the research on phylogenetic relationship. Here, we reported the first complete mitochondrial genome sequence of Varuna yui Hwang & Takeda, 1986 (Varunidae). The complete mtDNA (15,915 bp in length) consisted of 13 protein-coding genes, 22 tRNAs, two rRNA genes, and a control region. The gene arrangement was identical to those observed in the Varunidae species. The phylogenetic analysis suggested that V. yui had close relationship with other Varunidae species (Helicetient sinensis, Eriocher sinesis, etc.). The newly described genome may facilitate further comparative mitogenomic analysis within Varunidae species.
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links