METHODS: 322 participants with JME and 126 age and gender-matched controls completed the Barratt's Impulsiveness Scale (BIS-brief) alongside information on seizure history and AED use. We compared group BIS-brief scores and assessed associations of JME BIS-brief scores with seizure characteristics and AED adverse effects.
RESULTS: The mean BIS-brief score in JME was 18.1 ± 4.4 compared with 16.2 ± 4.1 in controls (P = 0.0007). Elevated impulsivity was associated with male gender (P = 0.027), frequent absence seizures (P = 0.0004) and lack of morning predominance of myoclonus (P = 0.008). High impulsivity significantly increased the odds of a psychiatric adverse event on levetiracetam (P = 0.036), but not any other psychiatric or somatic adverse effects.
INTERPRETATION: Trait impulsivity is elevated in JME and comparable to scores in personality and neurotic disorders. Increased seizure frequency and absence of circadian seizure pattern moderate BIS score, suggesting disruption of both cortico-striatal and thalamocortical networks as a shared mechanism between seizures and impulsivity in JME. These findings warrant consideration of impulsivity as a distinct target of intervention, and as a stratifying factor for AED treatment in JME, and perhaps other types of epilepsy. The role of impulsivity in treatment adherence and psychosocial outcome requires further investigation.
METHODS: A total of 4,666 controls were pooled from several studies of cancer and HPV seropositivity, all tested within the same laboratory. HPV16 E6 seropositive controls were classified as having (i) moderate [mean fluorescent intensity (MFI) ≥ 484 and <1,000] or (ii) high seroreactivity (MFI ≥ 1,000). Associations of moderate and high HPV16 E6 seroreactivity with (i) demographic risk factors; and seropositivity for (ii) other HPV16 proteins (E1, E2, E4, E7, and L1), and (iii) E6 proteins from non-HPV16 types (HPV6, 11, 18, 31, 33, 45, and 52) were evaluated.
RESULTS: Thirty-two (0.7%) HPV16 E6 seropositive controls were identified; 17 (0.4%) with moderate and 15 (0.3%) with high seroreactivity. High HPV16 E6 seroreactivity was associated with former smoking [odds ratio (OR), 5.5; 95% confidence interval (CI), 1.2-51.8], and seropositivity against HPV16 L1 (OR, 4.8; 95% CI, 1.3-15.4); E2 (OR, 7.7; 95% CI, 1.4-29.1); multiple HPV16 proteins (OR, 25.3; 95% CI, 2.6-119.6 for three HPV16 proteins beside E6) and HPV33 E6 (OR, 17.7; 95% CI, 1.9-81.8). No associations were observed with moderate HPV16 E6 seroreactivity.
CONCLUSIONS: High HPV16 E6 seroreactivity is rare among individuals without diagnosed cancer and was not explained by demographic factors.
IMPACT: Some HPV16 E6 seropositive individuals without diagnosed HPV-driven cancer, especially those with seropositivity against other HPV16 proteins, may harbor a biologically relevant HPV16 infection.
OBJECTIVE: To investigate clinical laboratory markers of SARS-CoV-2 and PASC.
DESIGN: Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024).
SETTING: 83 enrolling sites.
PARTICIPANTS: RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection.
MEASUREMENTS: Participants completed questionnaires and standard clinical laboratory tests.
RESULTS: Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero.
LIMITATION: Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined.
CONCLUSION: Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC.
PRIMARY FUNDING SOURCE: National Institutes of Health.
OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.
DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis.
RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13).
CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk.
PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.