Displaying all 17 publications

Abstract:
Sort:
  1. Razali N, Abdul Aziz A, Lim CY, Mat Junit S
    PeerJ, 2015;3:e1292.
    PMID: 26557426 DOI: 10.7717/peerj.1292
    The leaf extract of Tamarindus indica L. (T. indica) had been reported to possess high phenolic content and showed high antioxidant activities. In this study, the effects of the antioxidant-rich leaf extract of the T. indica on lipid peroxidation, antioxidant enzyme activities, H2O2-induced ROS production and gene expression patterns were investigated in liver HepG2 cells. Lipid peroxidation and ROS production were inhibited and the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was enhanced when the cells were treated with the antioxidant-rich leaf extract. cDNA microarray analysis revealed that 207 genes were significantly regulated by at least 1.5-fold (p < 0.05) in cells treated with the antioxidant-rich leaf extract. The expression of KNG1, SERPINC1, SERPIND1, SERPINE1, FGG, FGA, MVK, DHCR24, CYP24A1, ALDH6A1, EPHX1 and LEAP2 were amongst the highly regulated. When the significantly regulated genes were analyzed using Ingenuity Pathway Analysis software, "Lipid Metabolism, Small Molecule Biochemistry, Hematological Disease" was the top biological network affected by the leaf extract, with a score of 36. The top predicted canonical pathway affected by the leaf extract was the coagulation system (P < 2.80 × 10(-6)) followed by the superpathway of cholesterol biosynthesis (P < 2.17 × 10(-4)), intrinsic prothrombin pathway (P < 2.92 × 10(-4)), Immune Protection/Antimicrobial Response (P < 2.28 × 10(-3)) and xenobiotic metabolism signaling (P < 2.41 × 10(-3)). The antioxidant-rich leaf extract of T. indica also altered the expression of proteins that are involved in the Coagulation System and the Intrinsic Prothrombin Activation Pathway (KNG1, SERPINE1, FGG), Superpathway of Cholesterol Biosynthesis (MVK), Immune protection/antimicrobial response (IFNGR1, LEAP2, ANXA3 and MX1) and Xenobiotic Metabolism Signaling (ALDH6A1, ADH6). In conclusion, the antioxidant-rich leaf extract of T. indica inhibited lipid peroxidation and ROS production, enhanced antioxidant enzyme activities and significantly regulated the expression of genes and proteins involved with consequential impact on the coagulation system, cholesterol biosynthesis, xenobiotic metabolism signaling and antimicrobial response.
  2. Ho IYM, Abdul Aziz A, Mat Junit S
    Sci Rep, 2020 06 19;10(1):9987.
    PMID: 32561807 DOI: 10.1038/s41598-020-66913-x
    Barringtonia racemosa leaf water extract (BLE) had been shown to have high gallic acid (GA) content and BLE has been postulated to have anti-proliferative effects towards colorectal cancer. This study aims to further investigate the mechanism underlying the anti-proliferative effect of BLE in Caco-2 cells and to determine if GA is responsible for the observed effects. Both BLE and GA inhibited Caco-2 cells in a dose-dependent manner. Cells exposed to IC50 concentration of BLE and GA showed reduced antioxidant activities. GA-treated Caco-2 cells experienced higher oxidative stress compared to cells treated with BLE. Both BLE and GA significantly up-regulated the expression of SLC2A1. BLE but not GA, significantly down-regulated the expression of ADH4. Meanwhile, GA but not BLE, significantly up-regulated AKRIB10 and GLO1 but significantly down-regulated HAGH. Alterations in gene expression were coupled with changes in extracellular glucose and pyruvate levels. While BLE decreased intracellular pyruvate, GA did the opposite. Both intracellular and extracellular D-lactate were not affected by either BLE or GA. GA showed more pronounced effects on apoptosis while BLE irreversibly reduced cell percentage in the G0/G1 phase. In conclusion, this study demonstrates the multiple-actions of BLE against Caco-2 cells, potentially involving various polyphenolic compounds, including GA.
  3. Eng ZH, Abdul Aziz A, Ng KL, Mat Junit S
    Front Mol Biosci, 2023;10:1237548.
    PMID: 37692064 DOI: 10.3389/fmolb.2023.1237548
    Introduction: Papillary thyroid cancer (PTC) accounts for approximately 80% of all thyroid cancer cases. The mechanism of PTC tumourigenesis is not fully understood, but oxidative imbalance is thought to play a role. To gain further insight, this study evaluated antioxidant status, DNA repair capacity and genetic alterations in individuals diagnosed with benign thyroid lesion in one lobe (BTG) and PTC lesion in another. Methods: Individuals with coexisting BTG and PTC lesions in their thyroid lobes were included in this study. Reactive oxygen species (ROS) level, ABTS radical scavenging activity, ferric reducing antioxidant capacity, glutathione peroxidase and superoxide dismutase activities were measured in the thyroid tissue lysate. The expression of selected genes and proteins associated with oxidative stress defence and DNA repair were analysed through quantitative real-time PCR and Western blotting. Molecular alterations in genomic DNA were analysed through whole-exome sequencing and the potentially pathogenic driver genes filtered through Cancer-Related Analysis of Variants Toolkit (CRAVAT) analysis were subjected to pathway enrichment analysis using Metascape. Results: Significantly higher ROS level was detected in the PTC compared to the BTG lesions. The PTC lesions had significantly higher expression of GPX1, SOD2 and OGG1 but significantly lower expression of CAT and PRDX1 genes than the BTG lesions. Pathway enrichment analysis identified "regulation of MAPK cascade," "positive regulation of ERK1 and ERK2 cascade" and "negative regulation of reactive oxygen species metabolic process" to be significantly enriched in the PTC lesions only. Four pathogenic genetic variants were identified in the PTC lesions; BRAF V600E, MAP2K7-rs2145142862, BCR-rs372013175 and CD24 NM_001291737.1:p.Gln23fs while MAP3K9 and G6PD were among 11 genes that were mutated in both BTG and PTC lesions. Conclusion: Our findings provided further insight into the connection between oxidative stress, DNA damage, and genetic changes associated with BTG-to-PTC transformation. The increased oxidative DNA damage due to the heightened ROS levels could have heralded the BTG-to-PTC transformation, potentially through mutations in the genes involved in the MAPK signalling pathway and stress-activated MAPK/JNK cascade. Further in-vitro functional analyses and studies involving a larger sample size would need to be carried out to validate the findings from this pilot study.
  4. Lim CY, Mat Junit S, Abdulla MA, Abdul Aziz A
    PLoS One, 2013;8(7):e70058.
    PMID: 23894592 DOI: 10.1371/journal.pone.0070058
    BACKGROUND: Tamarindus indica (T. indica) is a medicinal plant with many biological activities including anti-diabetic, hypolipidaemic and anti-bacterial activities. A recent study demonstrated the hypolipidaemic effect of T. indica fruit pulp in hamsters. However, the biochemical and molecular mechanisms responsible for these effects have not been fully elucidated. Hence, the aims of this study were to evaluate the antioxidant activities and potential hypocholesterolaemic properties of T. indica, using in vitro and in vivo approaches.

    METHODOLOGY/PRINCIPAL FINDINGS: The in vitro study demonstrated that T. indica fruit pulp had significant amount of phenolic (244.9 ± 10.1 mg GAE/extract) and flavonoid (93.9 ± 2.6 mg RE/g extract) content and possessed antioxidant activities. In the in vivo study, hamsters fed with high-cholesterol diet for ten weeks showed elevated serum triglyceride, total cholesterol, HDL-C and LDL-C levels. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters significantly lowered serum triglyceride, total cholesterol and LDL-C levels but had no effect on the HDL-C level. The lipid-lowering effect was accompanied with significant increase in the expression of Apo A1, Abcg5 and LDL receptor genes and significant decrease in the expression of HMG-CoA reductase and Mtp genes. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters also protected against oxidative damage by increasing hepatic antioxidant enzymes, antioxidant activities and preventing hepatic lipid peroxidation.

    CONCLUSION/SIGNIFICANCE: It is postulated that tamarind fruit pulp exerts its hypocholesterolaemic effect by increasing cholesterol efflux, enhancing LDL-C uptake and clearance, suppressing triglyceride accumulation and inhibiting cholesterol biosynthesis. T. indica fruit pulp has potential antioxidative effects and is potentially protective against diet-induced hypercholesterolaemia.

  5. Razali N, Mat Junit S, Ariffin A, Ramli NS, Abdul Aziz A
    PMID: 26683054 DOI: 10.1186/s12906-015-0963-2
    Tamarindus indica L. (T. indica) or locally known as "asam jawa" belongs to the family Leguminosae. T. indica seeds as by-products from the fruits were previously reported to contain high polyphenolic content. However, identification of their bioactive polyphenols using recent technologies is less well researched but nonetheless important. Hence, it was the aim of this study to provide further information on the polyphenolic content and antioxidant activities as well as to identify and quantify its bioactive polyphenols.
  6. Lee CC, Harun F, Jalaludin MY, Lim CY, Ng KL, Mat Junit S
    Biomed Res Int, 2014;2014:370538.
    PMID: 24745015 DOI: 10.1155/2014/370538
    The c.2268dup mutation in thyroid peroxidase (TPO) gene was reported to be a founder mutation in Taiwanese patients with dyshormonogenetic congenital hypothyroidism (CH). The functional impact of the mutation is not well documented. In this study, homozygous c.2268dup mutation was detected in two Malaysian-Chinese sisters with goitrous CH. Normal and alternatively spliced TPO mRNA transcripts were present in thyroid tissues of the two sisters. The abnormal transcript contained 34 nucleotides originating from intron 12. The c.2268dup is predicted to generate a premature termination codon (PTC) at position 757 (p.Glu757X). Instead of restoring the normal reading frame, the alternatively spliced transcript has led to another stop codon at position 740 (p.Asp739ValfsX740). The two PTCs are located at 116 and 201 nucleotides upstream of the exons 13/14 junction fulfilling the requirement for a nonsense-mediated mRNA decay (NMD). Quantitative RT-PCR revealed an abundance of unidentified transcripts believed to be associated with the NMD. TPO enzyme activity was not detected in both patients, even though a faint TPO band of about 80 kD was present. In conclusion, the c.2268dup mutation leads to the formation of normal and alternatively spliced TPO mRNA transcripts with a consequential loss of TPO enzymatic activity in Malaysian-Chinese patients with goitrous CH.
  7. Lee CC, Harun F, Jalaludin MY, Heh CH, Othman R, Kang IN, et al.
    Horm Res Paediatr, 2014;81(5):356-60.
    PMID: 24717978 DOI: 10.1159/000359922
    Defects in the thyroid peroxidase (TPO) gene have been associated with goitrous congenital hypothyroidism (CH).
  8. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Mat-Junit S
    Biomed Res Int, 2013;2013:459017.
    PMID: 24455694 DOI: 10.1155/2013/459017
    The fruit pulp extract of Tamarindus indica has been reported for its antioxidant and hypolipidemic properties. In this study, the methanol extract of T. indica fruit pulp was investigated for its effects on the abundance of HepG2 cell lysate proteins. Cell lysate was extracted from HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp. Approximately 2500 spots were resolved using two-dimensional gel electrophoresis and the abundance of 20 cellular proteins was found to be significantly reduced. Among the proteins of reduced abundance, fourteen, including six proteins involved in metabolism (including ethanolamine phosphate cytidylyltransferase), four mitochondrial proteins (including prohibitin and respiratory chain proteins), and four proteins involved in translation and splicing, were positively identified by mass spectrometry and database search. The identified HepG2 altered abundance proteins, when taken together and analyzed by Ingenuity Pathways Analysis (IPA) software, are suggestive of the effects of T. indica fruit pulp extract on metabolism and inflammation, which are modulated by LXR/RXR. In conclusion, the methanol fruit pulp extract of T. indica was shown to cause reduced abundance of HepG2 mitochondrial, metabolic, and regulatory proteins involved in oxidative phosphorylation, protein synthesis, and cellular metabolism.
  9. Kong KW, Mat-Junit S, Ismail A, Aminudin N, Abdul-Aziz A
    Food Chem, 2014 Mar 1;146:85-93.
    PMID: 24176317 DOI: 10.1016/j.foodchem.2013.09.012
    The polyphenolic profiles and antioxidant activities of the water extracts of Barringtonia racemosa shoots (leaves and stems) were explored. Two methods, freeze drying and air drying, for preparation of the shoots, were also compared. Freeze drying was better as air drying caused 5-41% reduction of polyphenols. Three phenolic acids and three flavonoids were identified, using UHPLC. The descending order of polyphenols in the leaves and stems was gallic acid>ellagic acid>quercetin>protocatechuic acid>rutin>kaempferol. In vitro antioxidant analyses were performed using biological samples. In the LDL oxidation assay, B. racemosa leaf extract (IC50=73.0μg/ml) was better than stem extract (IC50=226μg/ml) at inhibiting the formation of TBARS and lipid hydroperoxides. Similar trends were observed for serum and haemoglobin oxidation. B. racemosa leaf extract was better than its stem extract in delaying the time required to oxidise haemoglobin to methaemoglobin. The high polyphenolic content of B. racemosa shoots could have contributed towards their antioxidative effects.
  10. Mohd Hazli UHA, Abdul-Aziz A, Mat-Junit S, Chee CF, Kong KW
    Food Res Int, 2019 01;115:241-250.
    PMID: 30599938 DOI: 10.1016/j.foodres.2018.08.094
    Alternanthera sessilis (red) (ASR) is an edible herbal plant with many beneficial health effects. This study aimed to investigate the antioxidant components and antioxidant activities of the edible leaves and stems of ASR extracted using solvent of varying polarities namely water, ethanol, ethyl acetate and hexane. ASR leaf extracts showed higher in both antioxidant components and activities than the stem extracts. Among the antioxidant components, the ethanol leaf extract showed higher phenolic (77.29 ± 1.02 mg GAE/g extract) content while the ethyl acetate leaf extract was rich in flavonoids (157.44 ± 10.19 mg RE/g extract), carotenoids (782.97 ± 10.78 mg BE/g extract) and betalains (betanin: 67.08 ± 0.49 mg/g extract; amaranthin: 93.94 ± 0.68 mg/g extract and betaxanthin: 53.92 ± 0.88 mg/g extract). Nevertheless, the ethanol leaf extract showed the highest DPPH radical scavenging activity and ABTS radical cation scavenging activity. It also exhibited highest ferric reducing activity among all the extracts. Four polyphenolic compounds from ASR leaf, namely ferulic acid, rutin, quercetin and apigenin, were identified and quantified using ultra high performance liquid chromatography. The existence of these compounds was further verified using tandem mass spectrometry. These current results indicate that ASR leaf particularly the ethanol extract has the potential to be exploited as a source of natural antioxidants.
  11. Kong KW, Abdul Aziz A, Razali N, Aminuddin N, Mat Junit S
    PeerJ, 2016;4:e2379.
    PMID: 27635343 DOI: 10.7717/peerj.2379
    Barringtonia racemosa is a medicinal plant belonging to the Lecythidaceae family. The water extract of B. racemosa leaf (BLE) has been shown to be rich in polyphenols. Despite the diverse medicinal properties of B. racemosa, information on its major biological effects and the underlying molecular mechanisms are still lacking.
  12. Abdullah MI, Lee CC, Mat Junit S, Ng KL, Hashim OH
    PeerJ, 2016;4:e2450.
    PMID: 27672505 DOI: 10.7717/peerj.2450
    Papillary thyroid cancer (PTC) is mainly diagnosed using fine-needle aspiration biopsy. This most common form of well-differentiated thyroid cancer occurs with or without a background of benign thyroid goiter (BTG).
  13. Ramli NSF, Mat Junit S, Leong NK, Razali N, Jayapalan JJ, Abdul Aziz A
    PeerJ, 2017;5:e3365.
    PMID: 28584708 DOI: 10.7717/peerj.3365
    BACKGROUND: Synthesis of thyroid hormones and regulation of their metabolism involve free radicals that may affect redox balance in the body. Thyroid disorders causing variations in the levels of thyroid hormones may alter cellular oxidative stress. The aim of this study was to measure the antioxidant activities and biomarkers of oxidative stress in serum and red blood cells (RBC) of patients with benign and malignant thyroid disorders and to investigate if changes in the antioxidant activities in these patients were linked to alterations in genes encoding the antioxidant enzymes.

    METHODS: Forty-one patients with thyroid disorders from University of Malaya Medical Centre were recruited. They were categorised into four groups: multinodular goitre (MNG) (n = 18), follicular thyroid adenoma (FTA) (n = 7), papillary thyroid cancer (PTC) (n = 10), and follicular thyroid cancer (FTC) (n = 6). Serum and RBC of patients were analysed for antioxidant activities, antioxidant enzymes, and biomarkers of oxidative stress. Alterations in genes encoding the antioxidant enzymes were analysed using whole exome sequencing and PCR-DNA sequencing.

    RESULTS: Patients with thyroid disorders had significantly higher serum superoxide dismutase (SOD) and catalase (CAT) activities compared to control, but had lower activities in RBC. There were no significant changes in serum glutathione peroxidase (GPx) activity. Meanwhile, GPx activity in RBC was reduced in PTC and FTC, compared to control and the respective benign groups. Antioxidant activities in serum were decreased in the thyroid disorder groups when compared to the control group. The levels of malondialdehyde (MDA) were elevated in the serum of FTA group when compared to controls, while in the RBC, only the MNG and PTC groups showed higher MDA equivalents than control. Serum reactive oxygen species (ROS) levels in PTC group of both serum and RBC were significantly higher than control group. Whole exome sequencing has resulted in identification of 49 single nucleotide polymorphisms (SNPs) in MNG and PTC patients and their genotypic and allelic frequencies were calculated. Analyses of the relationship between serum enzyme activities and the total SNPs identified in both groups revealed no correlation.

    DISCUSSION: Different forms of thyroid disorders influence the levels of antioxidant status in the serum and RBC of these patients, implying varying capability of preventing oxidative stress. A more comprehensive study with a larger target population should be done in order to further evaluate the relationships between antioxidant enzymes gene polymorphisms and thyroid disorders, as well as strengthening the minor evidences provided in literatures.

  14. Lee CC, Harun F, Jalaludin MY, Heh CH, Othman R, Mat Junit S
    Int J Endocrinol, 2013;2013:987186.
    PMID: 23737781 DOI: 10.1155/2013/987186
    Congenital hypothyroidism (CH) with multinodular goiter (MNG) is uncommonly seen in children. However, CH associated with goiter is often caused by defective Thyroid peroxidase (TPO) gene. In this study, we screened for mutation(s) in the TPO gene in two siblings with CH and MNG and their healthy family members. The two sisters, born to consanguineous parents, were diagnosed with CH during infancy and received treatment since then. They developed MNG during childhood despite adequate L-thyroxine replacement and negative thyroid antibody screening. PCR-amplification of all exons using flanking primers followed by DNA sequencing revealed that the two sisters were homozygous for a novel c.1502T>G mutation. The mutation is predicted to substitute valine for glycine at a highly conserved amino acid residue 501 (p.Val501Gly). Other healthy family members were either heterozygotes or mutation-free. The mutation was not detected in 50 healthy unrelated individuals. In silico analyses using PolyPhen-2 and SIFT predicted that the p.Val501Gly mutation is functionally "damaging." Tertiary modeling showed structural alterations in the active site of the mutant TPO. In conclusion, a novel mutation, p.Val501Gly, in the TPO gene was detected expanding the mutation spectrum of TPO associated with CH and MNG.
  15. Eng ZH, Ahmad Jefry MM, Ng KL, Abdul Aziz A, Mat Junit S
    Malays J Pathol, 2023 Dec;45(3):375-390.
    PMID: 38155379
    Thyroid malignancy status is usually confirmed through histopathological examination (HPE) following thyroidectomy. In Malaysia, the application of molecular markers in pre-operative diagnosis of thyroid cancer remains unexplored. In this study, BRAF and NRAS gene mutation panel was assessed, and the results were compared with retrospective HPE findings. Malaysian patients with benign goitre (BTG: n=33) and papillary thyroid cancer (PTC: n=25; PTCa: n=20, PTCb: n=5) were recruited at Universiti Malaya Medical Centre from September 2019 to December 2022. PCR-direct DNA sequencing of BRAFV600, NRASG12, NRASG13, and NRASQ61 was conducted on DNA extracted from the patients' thyroid tissue specimens following thyroidectomy and HPE. BRAFV600E and NRASQ61R mutations showed absolute PTC-specificity with PTC-sensitivity of 32% and 28%, respectively. NRASQ61H demonstrated lower PTC-specificity (94%) but higher PTC-sensitivity (72%) compared to the BRAFV600E and NRASQ61R mutations. Although the NRASG12 and NRASG13 variants were absent in this study, a novel NRASV14D mutation was detected in a PTCa patient. Unlike PTCb, coexistence of BRAFV600E and NRASQ61 variants was commonly observed among the PTCa patients. Notably, all PTCb patients had NRASQ61H mutation with one patient carried both the NRASQ61H and BRAFV600E mutations. Association analysis revealed potential link between gender, BRAFV600E mutation and lymph node metastasis. In conclusion, mutation panel comprising BRAFV600E, NRASQ61R, and NRASQ61H did not discriminate the two PTC subtypes but replicated the retrospective HPE findings in differentiating BTG from PTC. The application of this mutation panel in pre-operative diagnosis of thyroid nodules requires further validation in a larger sample size, preferably incorporating fineneedle aspirate biopsies.
  16. Kong KW, Mat-Junit S, Aminudin N, Hassan FA, Ismail A, Abdul Aziz A
    PeerJ, 2016;4:e1628.
    PMID: 26839752 DOI: 10.7717/peerj.1628
    Barringtonia racemosa is a tropical plant with medicinal values. In this study, the ability of the water extracts of the leaf (BLE) and stem (BSE) from the shoots to protect HepG2 cells against oxidative damage was studied. Five major polyphenolic compounds consisting of gallic acid, ellagic acid, protocatechuic acid, quercetin and kaempferol were identified using HPLC-DAD and ESI-MS. Cell viability assay revealed that BLE and BSE were non-cytotoxic (cell viabilities >80%) at concentration less than 250 µg/ml and 500 µg/ml, respectively. BLE and BSE improved cellular antioxidant status measured by FRAP assay and protected HepG2 cells against H2O2-induced cytotoxicity. The extracts also inhibited lipid peroxidation in HepG2 cells as well as the production of reactive oxygen species. BLE and BSE could also suppress the activities of superoxide dismutase and catalase during oxidative stress. The shoots of B. racemosa can be an alternative bioactive ingredient in the prevention of oxidative damage.
  17. Eng ZH, Abdullah MI, Ng KL, Abdul Aziz A, Arba'ie NH, Mat Rashid N, et al.
    Front Endocrinol (Lausanne), 2022;13:1039494.
    PMID: 36686473 DOI: 10.3389/fendo.2022.1039494
    BACKGROUND: Papillary thyroid cancer (PTC) is the most common thyroid malignancy. Concurrent presence of cytomorphological benign thyroid goitre (BTG) and PTC lesion is often detected. Aberrant protein profiles were previously reported in patients with and without BTG cytomorphological background. This study aimed to evaluate gene mutation profiles to further understand the molecular mechanism underlying BTG, PTC without BTG background and PTC with BTG background.

    METHODS: Patients were grouped according to the histopathological examination results: (i) BTG patients (n = 9), (ii) PTC patients without BTG background (PTCa, n = 8), and (iii) PTC patients with BTG background (PTCb, n = 5). Whole-exome sequencing (WES) was performed on genomic DNA extracted from thyroid tissue specimens. Nonsynonymous and splice-site variants with MAF of ≤ 1% in the 1000 Genomes Project were subjected to principal component analysis (PCA). PTC-specific SNVs were filtered against OncoKB and COSMIC while novel SNVs were screened through dbSNP and COSMIC databases. Functional impacts of the SNVs were predicted using PolyPhen-2 and SIFT. Protein-protein interaction (PPI) enrichment of the tumour-related genes was analysed using Metascape and MCODE algorithm.

    RESULTS: PCA plots showed distinctive SNV profiles among the three groups. OncoKB and COSMIC database screening identified 36 tumour-related genes including BRCA2 and FANCD2 in all groups. BRAF and 19 additional genes were found only in PTCa and PTCb. "Pathways in cancer", "DNA repair" and "Fanconi anaemia pathway" were among the top networks shared by all groups. However, signalling pathways related to tyrosine kinases were the most significantly enriched in PTCa while "Jak-STAT signalling pathway" and "Notch signalling pathway" were the only significantly enriched in PTCb. Ten SNVs were PTC-specific of which two were novel; DCTN1 c.2786C>G (p.Ala929Gly) and TRRAP c.8735G>C (p.Ser2912Thr). Four out of the ten SNVs were unique to PTCa.

    CONCLUSION: Distinctive gene mutation patterns detected in this study corroborated the previous protein profile findings. We hypothesised that the PTCa and PTCb subtypes differed in the underlying molecular mechanisms involving tyrosine kinase, Jak-STAT and Notch signalling pathways. The potential applications of the SNVs in differentiating the benign from the PTC subtypes requires further validation in a larger sample size.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links