Displaying all 4 publications

Abstract:
Sort:
  1. Jamaluddin ND, Mazlan NF, Tan LL, Yusof NYM, Khalid B
    Int J Biol Macromol, 2022 Feb 28;199:1-9.
    PMID: 34922999 DOI: 10.1016/j.ijbiomac.2021.12.047
    Dengue virus (DENV) is a positive-sense single-stranded RNA virus and that the detection of viral RNA itself is highly desirable, which can be achieved by using RNA biosensor diagnostic method. Herein, acrylic micropolymer-based optical RNA biosensor was developed by binding anionic copper(II) phthalocyanine (CPC) planar aromatic ligand to the G-quadruplex DNA probe via end-stacking with π-system of the guanine (G) quartet, and a blue coloration was developed on the G-quadruplex microspheres. Hybridization of G-quadruplex DNA probe with target DENV serotype 2 (DENV2) RNA unfolded the G-quadruplex, and rendering release of the CPC planar optical label, causing discoloration of the G-quadruplex microbiosensor. Optical characterization of the RNA biosensor was performed by means of fiber optic reflectance spectrophotometer at maximum reflectance wavelength of 774 nm. The reflectance response enhancement of the RNA-responsive G-quadruplex-based reflectometric biosensor was linearly proportional to the target oligo DENV2 RNA concentration in the range of 2 zM-2 μM, with a 0.447 zM limit of detection and a rapid response time of 30 min. Heightening in the reflectance signal based on structural transition of G-quadruplex in response to target RNA was successfully implemented in real-time DENV2 detection in non-invasive human fluid samples (i.e. saliva and urine) under informed consent.
  2. Mazlan NF, Tan LL, Karim NHA, Heng LY, Jamaluddin ND, Yusof NYM, et al.
    Talanta, 2019 Jun 01;198:358-370.
    PMID: 30876573 DOI: 10.1016/j.talanta.2019.02.036
    An optical genosensor based on Schiff base complex (Zn2+ salphen) DNA label and acrylic microspheres (AMs) as polymer support of the capturing DNA probe (cpDNA) was developed for dengue virus serotype 2 (DEN-2) detection via reflectance spectrophotometric method. The solid-state optical DNA biosensor showed high selectivity and specificity up to one-base mismatch in the target DNA sequence owing to the salphen chemical structure that is rich in localized electrons, and allowed π-π stacking interaction between stacked base pairs of double-stranded DNA (dsDNA). The reflectometric DNA microsensor demonstrated a broad linear detection range towards DEN-2 DNA from 1 × 10-15 M to 1 × 10-3 M with a low limit of detection (LOD) obtained at 1.21 × 10-16 M. The DNA biosensor gave reproducible optical response with a satisfactory relative standard deviation (RSD) at 3.1%, (n = 3), and the reflectance response was stable even after four regeneration cycles of the DNA biosensor. The optical genosensor was proven comparable with standard reverse transcription polymerase chain reaction (RT-PCR) in detecting DEN-2 genome acquired from clinical samples of serum, urine and saliva of dengue virus infected patients under informed consent. The developed reflectometric DNA biosensor is advantageous in offering an early DEN-2 diagnosis, when fever symptom started to manifest in patient.
  3. Jeningsih, Tan LL, Ulianas A, Heng LY, Mazlan NF, Jamaluddin ND, et al.
    Sensors (Basel), 2020 Mar 25;20(7).
    PMID: 32218202 DOI: 10.3390/s20071820
    A DNA micro-optode for dengue virus detection was developed based on the sandwich hybridization strategy of DNAs on succinimide-functionalized poly(n-butyl acrylate) (poly(nBA-NAS)) microspheres. Gold nanoparticles (AuNPs) with an average diameter of ~20 nm were synthesized using a centrifugation-based method and adsorbed on the submicrometer-sized polyelectrolyte-coated poly(styrene-co-acrylic acid) (PSA) latex particles via an electrostatic method. The AuNP-latex spheres were attached to the thiolated reporter probe (rDNA) by Au-thiol binding to functionalize as an optical gold-latex-rDNA label. The one-step sandwich hybridization recognition involved a pair of a DNA probe, i.e., capture probe (pDNA), and AuNP-PSA reporter label that flanked the target DNA (complementary DNA (cDNA)). The concentration of dengue virus cDNA was optically transduced by immobilized AuNP-PSA-rDNA conjugates as the DNA micro-optode exhibited a violet hue upon the DNA sandwich hybridization reaction, which could be monitored by a fiber-optic reflectance spectrophotometer at 637 nm. The optical genosensor showed a linear reflectance response over a wide cDNA concentration range from 1.0 × 10-21 M to 1.0 × 10-12 M cDNA (R2 = 0.9807) with a limit of detection (LOD) of 1 × 10-29 M. The DNA biosensor was reusable for three consecutive applications after regeneration with mild sodium hydroxide. The sandwich-type optical biosensor was well validated with a molecular reverse transcription polymerase chain reaction (RT-PCR) technique for screening of dengue virus in clinical samples, e.g., serum, urine, and saliva from dengue virus-infected patients under informed consent.
  4. Mohamad NS, Tan LL, Ali NIM, Mazlan NF, Sage EE, Hassan NI, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(11):28422-28445.
    PMID: 36680719 DOI: 10.1007/s11356-023-25257-5
    The current study aims to provide a roadmap for future research by analyzing the research structures and trends in scholarly publications related to the status of zinc in public health. Only journal articles published between 1978 and 2022 are included in the refined bibliographical outputs retrieved from the Web of Science (WoS) database. The first section announces findings based on WoS categories, such as discipline heterogeneity, times cited and publications over time, and citation reports. The second section then employs VoSViewer software for bibliometric analysis, which includes a thorough examination of co-authorship among researchers, organizations, and countries and a count of all bibliographic databases among documents. The final section discusses the research's weaknesses and strengths in zinc status, public health, and potential future directions; 7158 authors contributed to 1730 papers (including 339 with publications, more than three times). "Keen, C.L." is a researcher with the most publications and a better understanding of zinc status in public health. Meanwhile, the USA has been the epicenter of research on the status of zinc in public health due to the highest percentage of publications with the most citations and collaboration with the rest of the world, with the top institution being the University of California, Davis. Future research can be organized collaboratively based on hot topics from co-occurrence network mapping and bibliographic couplings to improve zinc status and protect public health.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links