Displaying all 9 publications

Abstract:
Sort:
  1. Salih SQ, Alsewari AA, Wahab HA, Mohammed MKA, Rashid TA, Das D, et al.
    PLoS One, 2023;18(7):e0288044.
    PMID: 37406006 DOI: 10.1371/journal.pone.0288044
    The retrieval of important information from a dataset requires applying a special data mining technique known as data clustering (DC). DC classifies similar objects into a groups of similar characteristics. Clustering involves grouping the data around k-cluster centres that typically are selected randomly. Recently, the issues behind DC have called for a search for an alternative solution. Recently, a nature-based optimization algorithm named Black Hole Algorithm (BHA) was developed to address the several well-known optimization problems. The BHA is a metaheuristic (population-based) that mimics the event around the natural phenomena of black holes, whereby an individual star represents the potential solutions revolving around the solution space. The original BHA algorithm showed better performance compared to other algorithms when applied to a benchmark dataset, despite its poor exploration capability. Hence, this paper presents a multi-population version of BHA as a generalization of the BHA called MBHA wherein the performance of the algorithm is not dependent on the best-found solution but a set of generated best solutions. The method formulated was subjected to testing using a set of nine widespread and popular benchmark test functions. The ensuing experimental outcomes indicated the highly precise results generated by the method compared to BHA and comparable algorithms in the study, as well as excellent robustness. Furthermore, the proposed MBHA achieved a high rate of convergence on six real datasets (collected from the UCL machine learning lab), making it suitable for DC problems. Lastly, the evaluations conclusively indicated the appropriateness of the proposed algorithm to resolve DC issues.
  2. Dastan D, Mohammed MKA, Al-Mousoi AK, Kumar A, Salih SQ, JosephNg PS, et al.
    Sci Rep, 2023 Jun 05;13(1):9076.
    PMID: 37277466 DOI: 10.1038/s41598-023-36427-3
    According to recent reports, planar structure-based organometallic perovskite solar cells (OPSCs) have achieved remarkable power conversion efficiency (PCE), making them very competitive with the more traditional silicon photovoltaics. A complete understanding of OPSCs and their individual parts is still necessary for further enhancement in PCE. In this work, indium sulfide (In2S3)-based planar heterojunction OPSCs were proposed and simulated with the SCAPS (a Solar Cell Capacitance Simulator)-1D programme. Initially, OPSC performance was calibrated with the experimentally fabricated architecture (FTO/In2S3/MAPbI3/Spiro-OMeTAD/Au) to evaluate the optimum parameters of each layer. The numerical calculations showed a significant dependence of PCE on the thickness and defect density of the MAPbI3 absorber material. The results showed that as the perovskite layer thickness increased, the PCE improved gradually but subsequently reached a maximum at thicknesses greater than 500 nm. Moreover, parameters involving the series resistance as well as the shunt resistance were recognized to affect the performance of the OPSC. Most importantly, a champion PCE of over 20% was yielded under the optimistic simulation conditions. Overall, the OPSC performed better between 20 and 30 °C, and its efficiency rapidly decreases above that temperature.
  3. Sasikumar G, Subramani A, Tamilarasan R, Rajesh P, Sasikumar P, Albukhaty S, et al.
    Molecules, 2023 Mar 24;28(7).
    PMID: 37049692 DOI: 10.3390/molecules28072931
    A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff's-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications.
  4. Tamilarasan R, Subramani A, Sasikumar G, Ganapathi P, Karthikeyan S, Ponnusamy S, et al.
    Sci Rep, 2023 Mar 17;13(1):4453.
    PMID: 36932171 DOI: 10.1038/s41598-023-31476-0
    Under conventional and silica-supported Muffle furnace methods, water-soluble substituted trimeric triaryl pyridinium cations with various inorganic counter anions are synthesized. The solvent-free synthesis method is superior to the conventional method in terms of non-toxicity, quicker reaction times, ease of workup, and higher yields. Trimeric substituted pyridinium salts acted as excellent catalytic responses for the preparation of Gem-bisamide derivatives compared with available literature. To evaluate the molecular docking, benzyl/4-nitrobenzyl substituted triaryl pyridinium salt compounds with VEGFR-2 kinase were used with H-bonds, π-π stacking, salt bridges, and hydrophobic contacts. The results showed that the VEGFR-2 kinase protein had the most potent inhibitory activity. Intriguingly, the compound [NBTAPy]PF6- had a strongly binds to VEGFR-2 kinase and controlled its activity in cancer treatment and prevention.
  5. Wong JP, Wijaya S, Ting KN, Wiart C, Mustafa K, Shipton F, et al.
    PMID: 24839451 DOI: 10.1155/2014/492703
    If left untreated, hypercholesterolaemia can lead to atherosclerosis, given time. Plants from the Fabaceae family have shown the ability to significantly suppress atherosclerosis progression. We selected four extracts from Pithecellobium ellipticum, from the Fabaceae family, to be screened in a 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) assay. The ethanol extract, at a concentration of 500  μ g/mL, exhibited superior inhibition properties over the other extracts by demonstrating 80.9% inhibition, while 0.223  μ g/mL of pravastatin (control) showed 78.1% inhibition towards enzymatic activity. These findings led to the fractionation of the ethanol extract using ethyl acetate : methanol (95 : 5), gradually increasing polarity and produced seven fractions (1A to 7A). Fraction 7A at 150  μ g/mL emerged as being the most promising bioactive fraction with 78.7% inhibition. FRAP, beta carotene, and DPPH assays supported the findings from the ethanol extract as it exhibited good overall antioxidant activity. The antioxidant properties have been said to reduce free radicals that are able to oxidize lipoproteins which are the cause of atherosclerosis. Phytochemical screenings revealed the presence of terpenoid, steroid, flavonoid, and phenolic compounds as the responsible group of compound(s), working individually or synergistically, within the extract to prevent binding of HMG-CoA to HMG-CoA reductase.
  6. Nosheen S, Naz T, Yang J, Hussain SA, Fazili ABA, Nazir Y, et al.
    Microb Cell Fact, 2021 Feb 27;20(1):52.
    PMID: 33639948 DOI: 10.1186/s12934-021-01545-y
    BACKGROUND: Mucor circinelloides WJ11 is a high-lipid producing strain and an excellent producer of γ-linolenic acid (GLA) which is crucial for human health. We have previously identified genes that encode for AMP-activated protein kinase (AMPK) complex in M. circinelloides which is an important regulator for lipid accumulation. Comparative transcriptional analysis between the high and low lipid-producing strains of M. circinelloides showed a direct correlation in the transcriptional level of AMPK genes with lipid metabolism. Thus, the role of Snf-β, which encodes for β subunit of AMPK complex, in lipid accumulation of the WJ11 strain was evaluated in the present study.

    RESULTS: The results showed that lipid content of cell dry weight in Snf-β knockout strain was increased by 32 % (from 19 to 25 %). However, in Snf-β overexpressing strain, lipid content of cell dry weight was decreased about 25 % (from 19 to 14.2 %) compared to the control strain. Total fatty acid analysis revealed that the expression of the Snf-β gene did not significantly affect the fatty acid composition of the strains. However, GLA content in biomass was increased from 2.5 % in control strain to 3.3 % in Snf-β knockout strain due to increased lipid accumulation and decreased to 1.83 % in Snf-β overexpressing strain. AMPK is known to inactivate acetyl-CoA carboxylase (ACC) which catalyzes the rate-limiting step in lipid synthesis. Snf-β manipulation also altered the expression level of the ACC1 gene which may indicate that Snf-β control lipid metabolism by regulating ACC1 gene.

    CONCLUSIONS: Our results suggested that Snf-β gene plays an important role in regulating lipid accumulation in M. circinelloides WJ11. Moreover, it will be interesting to evaluate the potential of other key subunits of AMPK related to lipid metabolism. Better insight can show us the way to manipulate these subunits effectively for upscaling the lipid production. Up to our knowledge, it is the first study to investigate the role of Snf-β in lipid accumulation in M. circinelloides.

  7. Naz T, Nazir Y, Nosheen S, Ullah S, Halim H, Fazili ABA, et al.
    Biomed Res Int, 2020;2020:8890269.
    PMID: 33457420 DOI: 10.1155/2020/8890269
    Carotenoids produced by microbial sources are of industrial and medicinal importance due to their antioxidant and anticancer properties. In the current study, optimization of β-carotene production in M. circinelloides strain 277.49 was achieved using response surface methodology (RSM). Cerulenin and ketoconazole were used to inhibit fatty acids and the sterol biosynthesis pathway, respectively, in order to enhance β-carotene production by diverting metabolic pool towards the mevalonate pathway. All three variables used in screening experiments were found to be significant for the production of β-carotene. The synergistic effect of the C/N ratio, cerulenin, and ketoconazole was further evaluated and optimized for superior β-carotene production using central composite design of RSM. Our results found that the synergistic combination of C/N ratios, cerulenin, and ketoconazole at different concentrations affected the β-carotene productions significantly. The optimal production medium (std. order 11) composed of C/N 25, 10 μg/mL cerulenin, and 150 mg/L ketoconazole, producing maximum β-carotene of 4.26 mg/L (0.43 mg/g) which was 157% greater in comparison to unoptimized medium (1.68 mg/L, 0.17 mg/g). So, it was concluded that metabolic flux had been successfully redirected towards the mevalonate pathway for enhanced β-carotene production in CBS 277.49.
  8. Kamarudin R, Ang YZ, Topare NS, Ismail MN, Mustafa KF, Gunnasegaran P, et al.
    Heliyon, 2024 Mar 15;10(5):e26597.
    PMID: 38434285 DOI: 10.1016/j.heliyon.2024.e26597
    The generation of power and fuel sustainability that contributes to a cleaner output of exhaust gases is one of the most important objectives the world seeks. In this paper, oxyhydrogen gas is used to retrofit into a two-stroke engine. The water was electrolysed and generated a mixture of oxygen (O2) and hydrogen (H2) or known as oxyhydrogen (HHO) gas via an electrolytic dry cell generator. The HHO was retrofitted experimentally to investigate the engine emissions and exhaust gas temperature from a 1.5 kW gasoline engine. The engine was tested with different power ratings (84-720 W) to investigate the performance and emissions of the engine using gasoline followed by the addition of HHO. The emissions of CO and NOx were measured with different amounts of HHO added. The exhaust temperature was calculated as one of the variables to be considered in relation to pollution. The air-fuel ratios are varied from 12 to 20% in the experiment. The most appropriate air-fuel ratio needed to start the generator with the most environmentally friendly gas emission was analysed. The results showed that the addition of HHO to the engine is successful in reducing fuel consumption up to 8.9%. A higher percentage of HHO added also has improved the emissions and reduced exhaust gas temperature. In this study, the highest quantity of HHO added at 0.15% of the volume fraction reduced CO gas emission by up to 9.41%, NOx gas up to 4.31%, and exhaust gas temperature by up to 2.02%. Generally, adding oxyhydrogen gas has significantly reduced the emissions, and exhaust temperature and provided an eco-friendly environment.
  9. Keles A, Cancela AA, Moussalem CK, Kessely YC, Malazonia Z, Shah JM, et al.
    Neurosurgery, 2024 Jan 30.
    PMID: 38289067 DOI: 10.1227/neu.0000000000002814
    BACKGROUND AND OBJECTIVES: In low- and middle-income countries (LMICs), approximately 5 million essential neurosurgical operations per year remain unaddressed. When compared with high-income countries, one of the reasons for this disparity is the lack of microsurgery training laboratories and neurosurgeons trained in microsurgical techniques. In 2020, we founded the Madison Microneurosurgery Initiative to provide no-cost, accessible, and sustainable microsurgery training opportunities to health care professionals from LMICs in their respective countries.

    METHODS: We initially focused on enhancing our expertise in microsurgery laboratory training requirements. Subsequently, we procured a wide range of stereo microscopes, light sources, and surgical instrument sets, aiming to develop affordable, high-quality, and long-lasting microsurgery training kits. We then donated those kits to neurosurgeons across LMICs. After successfully delivering the kits to designated locations in LMICs, we have planned to initiate microsurgery laboratory training in these centers by providing a combination of live-streamed, offline, and in-person training assistance in their institutions.

    RESULTS: We established basic microsurgery laboratory training centers in 28 institutions across 18 LMICs. This was made possible through donations of 57 microsurgery training kits, including 57 stereo microscopes, 2 surgical microscopes, and several advanced surgical instrument sets. Thereafter, we organized 10 live-streamed microanastomosis training sessions in 4 countries: Lebanon, Paraguay, Türkiye, and Bangladesh. Along with distributing the recordings from our live-streamed training sessions with these centers, we also granted them access to our microsurgery training resource library. We thus equipped these institutions with the necessary resources to enable continued learning and hands-on training. Moreover, we organized 7 in-person no-cost hands-on microanastomosis courses in different institutions across Türkiye, Georgia, Azerbaijan, and Paraguay. A total of 113 surgical specialists successfully completed these courses.

    CONCLUSION: Our novel approach of providing microsurgery training kits in combination with live-streamed, offline, and in-person training assistance enables sustainable microsurgery laboratory training in LMICs.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links