Displaying all 4 publications

Abstract:
Sort:
  1. Ajimsha MS, Majeed NA, Chinnavan E, Thulasyammal RP
    Complement Ther Med, 2014 Jun;22(3):419-25.
    PMID: 24906579 DOI: 10.1016/j.ctim.2014.03.013
    Relaxation training can be an important adjunct in reducing symptoms associated with Parkinson's disease (PD). Autogenic Training (AT) is a simple, easily administered and inexpensive technique for retraining the mind and the body to be able to relax. AT uses visual imagery and body awareness to promote a state of deep relaxation.
  2. Nisar A, Choon DS, Varaprasad M, Abbas AA
    Med J Malaysia, 2006 Feb;61 Suppl A:100-2.
    PMID: 17042242
    A variety of reconstructive options exist for revision of both femoral and acetabular components in total hip replacement surgery. The use of impaction bone grafting with morsellised allograft has shown promising results in revision total hip arthroplasty. It works as a biologic reconstitution of bone stock defects and provides a solid construct with stable fixation. We present a case of bilateral revision total hip arthroplasty with poor bone stock where reconstructive surgery was done by using impaction bone grafting, mesh and C-stem implants.
  3. Shankar PR, Hassali MA, Shahwani NA, Iqbal Q, Anwar M, Saleem F
    Lancet Glob Health, 2016 10;4(10):e689.
    PMID: 27633429 DOI: 10.1016/S2214-109X(16)30214-5
  4. Zahoor F, Nisar A, Bature UI, Abbas H, Bashir F, Chattopadhyay A, et al.
    Nanoscale Adv, 2024 Sep 09.
    PMID: 39263252 DOI: 10.1039/d4na00158c
    The rapid advancement of new technologies has resulted in a surge of data, while conventional computers are nearing their computational limits. The prevalent von Neumann architecture, where processing and storage units operate independently, faces challenges such as data migration through buses, leading to decreased computing speed and increased energy loss. Ongoing research aims to enhance computing capabilities through the development of innovative chips and the adoption of new system architectures. One noteworthy advancement is Resistive Random Access Memory (RRAM), an emerging memory technology. RRAM can alter its resistance through electrical signals at both ends, retaining its state even after power-down. This technology holds promise in various areas, including logic computing, neural networks, brain-like computing, and integrated technologies combining sensing, storage, and computing. These cutting-edge technologies offer the potential to overcome the performance limitations of traditional architectures, significantly boosting computing power. This discussion explores the physical mechanisms, device structure, performance characteristics, and applications of RRAM devices. Additionally, we delve into the potential future adoption of these technologies at an industrial scale, along with prospects and upcoming research directions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links