Displaying all 11 publications

Abstract:
Sort:
  1. Grigg MJ, Lubis IN, Tetteh KKA, Barber BE, William T, Rajahram GS, et al.
    Adv Parasitol, 2021;113:77-130.
    PMID: 34620386 DOI: 10.1016/bs.apar.2021.08.002
    Within the overlapping geographical ranges of P. knowlesi monkey hosts and vectors in Southeast Asia, an estimated 1.5 billion people are considered at risk of infection. P. knowlesi can cause severe disease and death, the latter associated with delayed treatment occurring from misdiagnosis. Although microscopy is a sufficiently sensitive first-line tool for P. knowlesi detection for most low-level symptomatic infections, misdiagnosis as other Plasmodium species is common, and the majority of asymptomatic infections remain undetected. Current point-of-care rapid diagnostic tests demonstrate insufficient sensitivity and poor specificity for differentiating P. knowlesi from other Plasmodium species. Molecular tools including nested, real-time, and single-step PCR, and loop-mediated isothermal amplification (LAMP), are sensitive for P. knowlesi detection. However, higher cost and inability to provide the timely point-of-care diagnosis needed to guide appropriate clinical management has limited their routine use in most endemic clinical settings. P. knowlesi is likely underdiagnosed across the region, and improved diagnostic and surveillance tools are required. Reference laboratory molecular testing of malaria cases for both zoonotic and non-zoonotic Plasmodium species needs to be more widely implemented by National Malaria Control Programs across Southeast Asia to accurately identify the burden of zoonotic malaria and more precisely monitor the success of human-only malaria elimination programs. The implementation of specific serological tools for P. knowlesi would assist in determining the prevalence and distribution of asymptomatic and submicroscopic infections, the absence of transmission in certain areas, and associations with underlying land use change for future spatially targeted interventions.
  2. Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, et al.
    PLoS Negl Trop Dis, 2024 Jan;18(1):e0011570.
    PMID: 38252650 DOI: 10.1371/journal.pntd.0011570
    BACKGROUND: Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection.

    METHODS & RESULTS: We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission.

    DISCUSSION: Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.

  3. Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, et al.
    medRxiv, 2023 Aug 08.
    PMID: 37609228 DOI: 10.1101/2023.08.04.23293633
    BACKGROUND: Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection.

    METHODS & RESULTS: We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission.

    DISCUSSION: Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.

  4. Auburn S, Benavente ED, Miotto O, Pearson RD, Amato R, Grigg MJ, et al.
    Nat Commun, 2018 Jul 03;9(1):2585.
    PMID: 29968722 DOI: 10.1038/s41467-018-04965-4
    The incidence of Plasmodium vivax infection has declined markedly in Malaysia over the past decade despite evidence of high-grade chloroquine resistance. Here we investigate the genetic changes in a P. vivax population approaching elimination in 51 isolates from Sabah, Malaysia and compare these with data from 104 isolates from Thailand and 104 isolates from Indonesia. Sabah displays extensive population structure, mirroring that previously seen with the emergence of artemisinin-resistant P. falciparum founder populations in Cambodia. Fifty-four percent of the Sabah isolates have identical genomes, consistent with a rapid clonal expansion. Across Sabah, there is a high prevalence of loci known to be associated with antimalarial drug resistance. Measures of differentiation between the three countries reveal several gene regions under putative selection in Sabah. Our findings highlight important factors pertinent to parasite resurgence and molecular cues that can be used to monitor low-endemic populations at the end stages of P. vivax elimination.
  5. Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, et al.
    J Infect Dis, 2019 Oct 22;220(11):1738-1749.
    PMID: 30668735 DOI: 10.1093/infdis/jiz016
    The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
  6. Braima KA, Piera KA, Lubis IN, Noviyanti R, Rajahram GS, Kariodimedjo P, et al.
    medRxiv, 2024 Apr 06.
    PMID: 38633782 DOI: 10.1101/2024.04.04.24305339
    BACKGROUND: Zoonotic P. knowlesi and P. cynomolgi symptomatic and asymptomatic infections occur across endemic areas of Southeast Asia. Most infections are low-parasitemia, with an unknown proportion below routine microscopy detection thresholds. Molecular surveillance tools optimizing the limit of detection (LOD) would allow more accurate estimates of zoonotic malaria prevalence.

    METHODS: An established ultra-sensitive Plasmodium genus quantitative-PCR (qPCR) assay targeting the 18S rRNA gene underwent LOD evaluation with and without reverse transcription (RT) for P. knowlesi, P. cynomolgi and P. vivax using total nucleic acid preserved (DNA/RNA Shield™) isolates and archived dried blood spots (DBS). LODs for selected P. knowlesi-specific assays, and reference P. vivax- and P. cynomolgi-specific assays were determined with RT. Assay specificities were assessed using clinical malaria samples and malaria-negative controls.

    RESULTS: The use of reverse transcription improved Plasmodium species detection by up to 10,000-fold (Plasmodium genus), 2759-fold (P. knowlesi), 1000-fold (P. vivax) and 10-fold (P. cynomolgi). The median LOD with RT for the Kamau et al. Plasmodium genus RT-qPCR assay was ≤0.0002 parasites/μL for P. knowlesi and 0.002 parasites/μL for both P. cynomolgi and P. vivax. The LODs with RT for P. knowlesi-specific PCRs were: Imwong et al. 18S rRNA (0.0007 parasites/μL); Divis et al. real-time 18S rRNA (0.0002 parasites/μL); Lubis et al. hemi-nested SICAvar (1.1 parasites/μL) and Lee et al. nested 18S rRNA (11 parasites/μL). The LOD for P. vivax- and P. cynomolgi-specific assays with RT were 0.02 and 0.20 parasites/μL respectively. For DBS P. knowlesi samples the median LOD for the Plasmodium genus qPCR with RT was 0.08, and without RT was 19.89 parasites/uL (249-fold change); no LOD improvement was demonstrated in DBS archived beyond 6 years. The Plasmodium genus and P. knowlesi-assays were 100% specific for Plasmodium species and P. knowlesi detection, respectively, from 190 clinical infections and 48 healthy controls. Reference P. vivax-specific primers demonstrated known cross-reactivity with P. cynomolgi.

    CONCLUSION: Our findings support the use of an 18S rRNA Plasmodium genus qPCR and species-specific nested PCR protocol with RT for highly-sensitive surveillance of zoonotic and human Plasmodium species infections.

  7. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
  8. Thriemer K, Ley B, Bobogare A, Dysoley L, Alam MS, Pasaribu AP, et al.
    Malar J, 2017 04 05;16(1):141.
    PMID: 28381261 DOI: 10.1186/s12936-017-1784-1
    The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by  the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
  9. MalariaGEN, Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, et al.
    Wellcome Open Res, 2022;7:136.
    PMID: 35651694 DOI: 10.12688/wellcomeopenres.17795.1
    This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.
  10. Trimarsanto H, Amato R, Pearson RD, Sutanto E, Noviyanti R, Trianty L, et al.
    Commun Biol, 2022 Dec 23;5(1):1411.
    PMID: 36564617 DOI: 10.1038/s42003-022-04352-2
    Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.
  11. Thriemer K, Bobogare A, Ley B, Gudo CS, Alam MS, Anstey NM, et al.
    Malar J, 2018 Jun 20;17(1):241.
    PMID: 29925430 DOI: 10.1186/s12936-018-2380-8
    The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links