Displaying all 20 publications

Abstract:
Sort:
  1. Nurul AA, Norazmi MN
    Parasitol Res, 2011 Apr;108(4):887-97.
    PMID: 21057812 DOI: 10.1007/s00436-010-2130-5
    Vaccine development against the blood-stage malaria parasite is aimed at reducing the pathology of the disease. We constructed a recombinant Mycobacterium bovis bacille Calmette Guerin (rBCG) expressing the 19 kDa C-terminus of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) to evaluate its protective ability against merozoite invasion of red blood cells in vitro. A mutated version of MSP-1(19), previously shown to induce the production of inhibitory but not blocking antibodies, was cloned into a suitable shuttle plasmid and transformed into BCG Japan (designated rBCG016). A native version of the molecule was also cloned into BCG (rBCG026). Recombinant BCG expressing the mutated version of MSP-1(19) (rBCG016) elicited enhanced specific immune response against the epitope in BALB/c mice as compared to rBCG expressing the native version of the epitope (rBCG026). Sera from rBCG016-immunized mice contained significant levels of specific IgG, especially of the IgG2a subclass, against MSP-1(19) as determined by enzyme-linked immunosorbent assay. The sera was reactive with fixed P. falciparum merozoites as demonstrated by indirect immunofluorescence assay (IFA) and inhibited merozoite invasion of erythrocytes in vitro. Furthermore, lymphocytes from rBCG016-immunized mice demonstrated higher proliferative response against the MSP-1(19) antigen as compared to those of rBCG026- and BCG-immunized animals. rBCG expressing the mutated version of MSP-1(19) of P. falciparum induced enhanced humoral and cellular responses against the parasites paving the way for the rational use of rBCG as a blood-stage malaria vaccine candidate.
  2. Maheswary T, Nurul AA, Fauzi MB
    Pharmaceutics, 2021 Jun 29;13(7).
    PMID: 34209654 DOI: 10.3390/pharmaceutics13070981
    A diverse range of normal flora populates the human skin and numbers are relatively different between individuals and parts of the skin. Humans and normal flora have formed a symbiotic relationship over a period of time. With numerous disease processes, the interaction between the host and normal flora can be interrupted. Unlike normal wound healing, which is complex and crucial to sustaining the skin's physical barrier, chronic wounds, especially in diabetes, are wounds that fail to heal in a timely manner. The conditions become favorable for microbes to colonize and establish infections within the skin. These include secretions of various kinds of molecules, substances or even trigger the immune system to attack other cells required for wound healing. Additionally, the healing process can be slowed down by prolonging the inflammatory phase and delaying the wound repair process, which causes further destruction to the tissue. Antibiotics and wound dressings become the targeted therapy to treat chronic wounds. Though healing rates are improved, prolonged usage of these treatments could become ineffective or microbes may become resistant to the treatments. Considering all these factors, more studies are needed to comprehensively elucidate the role of human skin normal flora at the cellular and molecular level in a chronic injury. This article will review wound healing physiology and discuss the role of normal flora in the skin and chronic wounds.
  3. Wan Afiqah Syahirah Wan Ghazalia, A’attiyyah Ab Alim, Thirumulu Ponnuraj Kannan, Nurul Asma Abdullah, Nor Azah Mohd Ali, Khairani Idah Mokhtar
    MyJurnal
    Discovery of drugs from medicinal plants continues to provide major leads against various
    pharmacological targets, particularly in cancer diseases. Hence, there are increasing demands to discover
    more therapeutic agents from various species of medicinal plants. Chemical compounds in plants are
    important for human beings due to their therapeutic properties. Goniothalamus umbrosus, Typhonium
    flagelliforme, Myrmecodia pendens, Strobilanthes crispus and Clinacanthus nutans, are among the herbal
    species, which are consumed by cancer patients in order to combat against the growth of cancer cells. The
    present review aims to highlight on the anti-cancer properties of the listed Malaysian herbs.
  4. Norazmi MN, Mohamed R, Nurul AA, Yaacob NS
    Clin. Dev. Immunol., 2012;2012:849195.
    PMID: 22548115 DOI: 10.1155/2012/849195
    Given their roles in immune regulation, the expression of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) 1 and 2 isoforms was investigated in human naïve (CD45RA+) and memory (CD45RO+) CD4+ T cells. Stimulation of both types of cells via the CD3/CD28 pathway resulted in high expression of both PPARγ receptors as measured by real-time PCR. Treatment with the PPARγ agonist, ciglitazone, increased PPARγ1 expression but decreased PPARγ2 expression in stimulated naïve and memory cells. Furthermore, when present, the magnitude of both PPARγ receptors expression was lower in naïve cells, perhaps suggesting a lower regulatory control of these cells. Similar profiles of selected proinflammatory cytokines were expressed by the two cell types following stimulation. The induction of PPARγ1 and suppression of PPARγ2 expressions in naïve and memory CD4+ T cells in the presence of ciglitazone suggest that the PPARγ subtypes may have different roles in the regulation of T-cell function.
  5. Wan Kamarul Zaman WS, Nurul AA, Nordin F
    Biomedicines, 2021 Sep 17;9(9).
    PMID: 34572431 DOI: 10.3390/biomedicines9091245
    "Jekyll and Hyde" refers to persons with an unpredictably dual personality, who are battling between good and evil within themselves In this regard, even cells consist of good and evil counterparts. Normal stem cells (NSCs) and cancer stem cells (CSCs) are two types of cells that share some similar characteristics but have distinct functions that play a major role in physiological and pathophysiological development. In reality, NSCs such as the adult and embryonic stem cells, are the good cells and the ultimate treatment used in cell therapy. CSCs are the corrupted cells that are a subpopulation of cancer cells within the cancer microenvironment that grow into a massive tumour or malignancy that needs to be treated. Hence, understanding the connection between NSCs and CSCs is important not just in cancer development but also in their therapeutic implication, which is the focus of this review.
  6. Sritharan S, Kannan TP, Norazmi MN, Nurul AA
    J Craniomaxillofac Surg, 2018 Aug;46(8):1361-1367.
    PMID: 29805067 DOI: 10.1016/j.jcms.2018.05.002
    OBJECTIVE: In this study, we evaluated the potential role of IL-6 and/or IL-17A in regulating the OPG/RANKL (osteoprotegerin/receptor activator of nuclear factor kappa b ligand) system of murine osteoblast cell line (MC3T3-E1) cultured on hydroxyapatite (HA).

    METHODS: MC3T3-E1 cells were seeded on HA and treated with recombinant IL-6 or rIL-17A or combination of the two cytokines. Cell proliferation and differentiation activity were measured by MTS and alkaline phosphatase assays respectively. Observation of cell adhesion and proliferation was examined by scanning electron microscopy. Gene and protein expressions were performed on RANKL and OPG using qPCR, Western blot and ELISA.

    RESULTS: We demonstrated that treatment with recombinant IL-17A (rIL-17A) and the combination rIL-6/rIL-17A promoted better adhesion and higher proliferation of cells on HA. Cells treated with rIL-17A and the combination cytokines showed a significant increase in differentiation activity on day 7, 10 and 14 as indicated by ALP activity (p 

  7. Subhi H, Reza F, Husein A, Nurul AA
    J Conserv Dent, 2018 4 10;21(1):21-25.
    PMID: 29628642 DOI: 10.4103/JCD.JCD_86_17
    Aim: The aim of this study was to evaluate the cytotoxicity effects of experimental gypsum-based biomaterial prepared with various concentrations of chitosan (Gyp-CHT).

    Materials and Methods: The study was performed using cell viability assay for mitochondrial dehydrogenase activity in stem cells from human exfoliated deciduous teeth (SHED), after 1, 2, and 3 days of exposure to the biomaterial extracts of varying concentrations. Differences in mean cell viability values were assessed by one-way analysis of variance, followed by Dunnett T3 post hoc test for multiple comparisons (P < 0.05).

    Results: The cell viability to Gyp-CHT in low extract concentrations was statistically similar to that of the control and different from that of high extract concentrations. Gyp-5% CHT showed the highest percentage of cell viability with 110.92%, 108.56%, and 109.11%. The cell viability showed a tendency toward increment with low extract concentration and no constant effect of CHT on cell viability toward higher or lower.

    Conclusions: Gyp-CHT biomaterial has no cytotoxic effects on the cultured SHED.

  8. Sebastian AA, Kannan TP, Norazmi MN, Nurul AA
    J Tissue Eng Regen Med, 2018 08;12(8):1856-1866.
    PMID: 29774992 DOI: 10.1002/term.2706
    Stem cells derived from human exfoliated deciduous teeth (SHED) represent a promising cell source for bone tissue regeneration. This study evaluated the effects of interleukin-17A (IL-17A) on the osteogenic differentiation of SHED. SHED were cultured in complete alpha minimum essential medium supplemented with osteoinducing reagents and treated with recombinant IL-17A. The cells were quantitatively analysed for proliferative activity by MTS assay, cell markers expression, and apoptotic activity by flow cytometry. For osteogenic differentiation, alkaline phosphatase (ALP) activity was quantified; mineralization assays were carried out using von Kossa and Alizarin red, and expression of osteogenic markers were analysed by real-time polymerase chain reaction and Western blot. The results showed that treatment with IL-17A increased proliferative activity in a dose-dependent manner, but reduced the expression of stem cell markers (c-Myc and Nanog) as the days progressed. IL-17A induced osteogenic differentiation in SHED as evidenced by high ALP activity, increased matrix mineralization, and upregulation of the mRNA expression of the osteogenic markers ALP, alpha 1 type 1 collagen (Col1A1), runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and osteoprotegerin (OPG) but downregulation of receptor activator of nuclear factor κB ligand (RANKL) as well as altering the OPG/RANKL ratio. Findings from our study indicate that IL-17A enhances proliferation and osteogenic differentiation of SHED by regulating OPG/RANKL mechanism thus suggests therapeutic potential of IL-17A in bone regeneration.
  9. Farea M, Husein A, Halim AS, Berahim Z, Nurul AA, Mokhtar KI, et al.
    Clin Oral Investig, 2016 Jul;20(6):1181-91.
    PMID: 26392396 DOI: 10.1007/s00784-015-1601-6
    The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED).
  10. Nurul AA, Azlan M, Ahmad Mohd Zain MR, Sebastian AA, Fan YZ, Fauzi MB
    Biomedicines, 2021 Jul 07;9(7).
    PMID: 34356849 DOI: 10.3390/biomedicines9070785
    Osteoarthritis (OA) has traditionally been known as a "wear and tear" disease, which is mainly characterized by the degradation of articular cartilage and changes in the subchondral bone. Despite the fact that OA is often thought of as a degenerative disease, the catabolic products of the cartilage matrix often promote inflammation by activating immune cells. Current OA treatment focuses on symptomatic treatment, with a primary focus on pain management, which does not promote cartilage regeneration or attenuate joint inflammation. Since articular cartilage have no ability to regenerate, thus regeneration of the tissue is one of the key targets of modern treatments for OA. Cell-based therapies are among the new therapeutic strategies for OA. Mesenchymal stem cells (MSCs) have been extensively researched as potential therapeutic agents in cell-based therapy of OA due to their ability to differentiate into chondrocytes and their immunomodulatory properties that can facilitate cartilage repair and regeneration. In this review, we emphasized current knowledge and future perspectives on the use of MSCs by targeting their regeneration potential and immunomodulatory effects in the treatment of OA.
  11. Wan-Nor-Amilah WAW, Syifaa'-Liyana ML, Azlina Y, Shafizol Z, Nurul AA
    Oman Med J, 2021 May;36(3):e265.
    PMID: 34113461 DOI: 10.5001/omj.2021.63
    Objectives: Our study reports the immunomodulatory potency of Quercus infectoria gall extract in vitro. The aqueous extract was prepared and examined for its effects on cell proliferation, phagocytic activity, nitric oxide (NO) production, and cytokine synthesis by murine macrophages.

    Methods: Proliferative, phagocytic activity, and NO production of extract-treated and control cells were studied using proliferative assay, flow cytometry, and Griess reaction, respectively. An enzyme-linked immunosorbent assay was performed to determine the levels of pro- and anti-inflammatory cytokines in the macrophage culture.

    Results: Treated macrophages had a higher proliferative rate and phagocytic activity compared to untreated macrophages. The cell treatment with an extract concentration of 64 μg/mL demonstrated a significant decrease in NO production (p < 0.001). An increase in cytokine levels (IL-2, IL-5, IL-10, IL-17A, IL-23, TGF-β1) was observed; however, this increase was not statistically significant.

    Conclusions: Our study suggests that gall extract possesses the potential for augmenting immunomodulatory activity by cellular mediated mechanism and could play a role in regulating the innate immune response.

  12. Noh IC, Ahmad I, Suraiya S, Musa NF, Nurul AA, Ruzilawati AB
    Biomedicines, 2021 Aug 30;9(9).
    PMID: 34572300 DOI: 10.3390/biomedicines9091115
    Cytokines play an important role in modulating inflammation during viral infection, including hepatitis C virus (HCV) infection. Genetic polymorphisms of cytokines can alter the immune response against this infection. The objective of this study was to investigate the possible association between chronic hepatitis C virus infection susceptibility and cytokine gene polymorphism for interleukin-10 (IL-10) rs1800896 and rs1800871, interleukin 6 (IL-6) rs1800795, TNF-α rs1800629, and TGF-β1 rs1800471 in Malay male drug abusers. The study was conducted on 76 HCV-positive (HP) male drug abusers and 40 controls (HCV-negative male drug abusers). We found that there were significant differences in the frequencies of genotype for IL-10 rs1800871 (p = 0.0386) and at the allelic level for IL-10 rs1800896 A versus G allele (p = 0.0142) between the HP group and the control group. However, there were no significant differences in gene polymorphism in interleukin 6 rs1800795, TNF-α rs1800629 and TGF-β1 rs1800471. These findings suggest significant associations between gene polymorphism for IL-10 rs1800871, IL-10 rs1800896 (at the allelic level) and susceptibility to HCV infection among Malay male drug abusers.
  13. Subhi H, Reza F, Husein A, Al Shehadat SA, Nurul AA
    Int J Biomater, 2018;2018:3804293.
    PMID: 30147725 DOI: 10.1155/2018/3804293
    Effective pulp capping material must be biocompatible and have the ability to induce dentin bridge formation as well as having suitable physical and mechanical properties; however, many current materials do not satisfy the clinical requirements. This study aimed to assess the physical and mechanical properties of gypsum-based chitosan material (Gp-CT) and to evaluate its effects on cellular properties of stem cells from human exfoliated deciduous teeth (SHED). The experimental material was prepared with different concentrations of chitosan (CT) with or without BMP-2. Then, setting time, compressive strength, and pH were determined. In addition, cell viability, alkaline phosphatase (ALP) activity, and cell attachment were assessed. The setting time, compressive strength, and pH obtained were 4.1-6.6 min, 2.63-5.83 MPa, and 6.5-5.7, respectively. The cell viability to gypsum (Gp) with different CT concentrations was similar to that of the control on day 1 but statistically different from that of Gp alone on day 3. The ALP activity of SHED was significantly higher (p < 0.05) in CT- and BMP-2-containing materials than those in the control and Dycal at days 3 and 14. The scanning electron microscopy (SEM) image revealed that flattened cells were distributed across and adhered to the material surface. In conclusion, Gp-CT material shows promise as a potential material for direct pulp capping.
  14. Subhi H, Husein A, Mohamad D, Nik Abdul Ghani NR, Nurul AA
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641172 DOI: 10.3390/polym13193358
    Calcium silicate-based cements (CSCs) are widely used in various endodontic treatments to promote wound healing and hard tissue formation. Chitosan-based accelerated Portland cement (APC-CT) is a promising and affordable material for endodontic use. This study investigated the effect of APC-CT on apoptosis, cell attachment, dentinogenic/osteogenic differentiation and mineralization activity of stem cells from human exfoliated deciduous teeth (SHED). APC-CT was prepared with various concentrations of chitosan (CT) solution (0%, 0.625%, 1.25% and 2.5% (w/v)). Cell attachment was determined by direct contact analysis using field emission scanning electron microscopy (FESEM); while the material extracts were used for the analyses of apoptosis by flow cytometry, dentinogenic/osteogenic marker expression by real-time PCR and mineralization activity by Alizarin Red and Von Kossa staining. The cells effectively attached to the surfaces of APC and APC-CT, acquiring flattened elongated and rounded-shape morphology. Treatment of SHED with APC and APC-CT extracts showed no apoptotic effect. APC-CT induced upregulation of DSPP, MEPE, DMP-1, OPN, OCN, OPG and RANKL expression levels in SHED after 14 days, whereas RUNX2, ALP and COL1A1 expression levels were downregulated. Mineralization assays showed a progressive increase in the formation of calcium deposits in cells with material containing higher CT concentration and with incubation time. In conclusion, APC-CT is nontoxic and promotes dentinogenic/osteogenic differentiation and mineralization activity of SHED, indicating its regenerative potential as a promising substitute for the commercially available CSCs to induce dentin/bone regeneration.
  15. Syed NH, Misbah I, Azlan M, Ahmad Mohd Zain MR, Nurul AA
    Indian J Orthop, 2024 Jul;58(7):866-875.
    PMID: 38948378 DOI: 10.1007/s43465-024-01175-7
    BACKGROUND: Exosomes are the smallest extracellular vesicles (30-150 nm) secreted by all cell types, including synovial fluid. However, because biological fluids are complex, heterogeneous, and contain contaminants, their isolation is difficult and time-consuming. Furthermore, the pathophysiology of osteoarthritis (OA) involves exosomes carrying complex components that cause macrophages to release chemokines and proinflammatory cytokines. This narrative review aims to provide in-depth insights into exosome biology, isolation techniques, role in OA pathophysiology, and potential role in future OA therapeutics.

    METHODS: A literature search was conducted using PubMed, Scopus, and Web of Science databases for studies involving exosomes in the osteoarthritis using keywords "Exosomes" and "Osteoarthritis". Relevant articles in the last 15 years involving both human and animal models were included. Studies involving exosomes in other inflammatory diseases were excluded.

    RESULTS: Despite some progress, conventional techniques for isolating exosomes remain laborious and difficult, requiring intricate and time-consuming procedures across various body fluids and sample origins. Moreover, exosomes are involved in various physiological processes associated with OA, like cartilage calcification, degradation of osteoarthritic joints, and inflammation.

    CONCLUSION: The process of achieving standardization, integration, and high throughput of exosome isolation equipment is challenging and time-consuming. The integration of various methodologies can be employed to effectively address specific issues by leveraging their complementary benefits. Exosomes have the potential to effectively repair damaged cartilage OA, reduce inflammation, and maintain a balance between the formation and breakdown of cartilage matrix, therefore showing promise as a therapeutic option for OA.

  16. Muhamad SA, Safuan S, Stanslas J, Wan Ahmad WAN, Bushra SM, Nurul AA
    Sci Rep, 2023 Oct 27;13(1):18442.
    PMID: 37891170 DOI: 10.1038/s41598-023-45640-z
    Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) is used traditionally to treat various illnesses, including asthma in Southeast Asia. This study was carried out to evaluate the effect of L. rhinocerotis extract (LRE) on airway inflammation and remodelling in a chronic model of asthma. The present study investigated the therapeutic effects of LRE on airway inflammation and remodelling in prolonged allergen challenged model in allergic asthma. Female Balb/C mice were sensitised using ovalbumin (OVA) on day 0 and 7, followed by OVA-challenged (3 times/week) for 2, 6 and 10 weeks. LRE (125, 250, 500 mg/kg) were administered by oral gavage one hour after every challenge. One group of mice were left untreated after the final challenge for two weeks. LRE suppressed inflammatory cells and Th2 cytokines (IL-4, IL-5 and IL-13) in BALF and reduced IgE level in the serum. LRE also attenuated eosinophils infiltration and goblet cell hyperplasia in the lung tissues; as well as ameliorated airway remodelling by reducing smooth muscle thickness and reducing the expressions of TGF-β1 and Activin A positive cell in the lung tissues. LRE attenuated airway inflammation and remodelling in the prolonged allergen challenge of allergic asthma model. These findings suggest the therapeutic potential of LRE as an alternative for the management of allergic asthma.
  17. Syed NH, Mussa A, Elmi AH, Jamal Al-Khreisat M, Ahmad Mohd Zain MR, Nurul AA
    Immunol Invest, 2024 Feb;53(2):185-209.
    PMID: 38095847 DOI: 10.1080/08820139.2023.2293095
    Inflammatory arthritis commonly initiates in the soft tissues lining the joint. This lining swells, as do the cells in it and inside the joint fluid, producing chemicals that induce inflammation signs such as heat, redness, and swelling. MicroRNA (miRNA), a subset of non-coding small RNA molecules, post-transcriptionally controls gene expression by targeting their messenger RNA. MiRNAs modulate approximately 1/3 of the human genome with their multiple targets. Recently, they have been extensively studied as key modulators of the innate and adaptive immune systems in diseases such as allergic disorders, types of cancer, and cardiovascular diseases. However, research on the different inflammatory joint diseases, such as rheumatoid arthritis, gout, Lyme disease, ankylosing spondylitis, and psoriatic arthritis, remains in its infancy. This review presents a deeper understanding of miRNA biogenesis and the functions of miRNAs in modulating the immune and inflammatory responses in the above-mentioned inflammatory joint diseases. According to the literature, it has been demonstrated that the development of inflammatory joint disorders is closely related to different miRNAs and their specific regulatory mechanisms. Furthermore, they may present as possible prognostic and diagnostic biomarkers for all diseases and may help in developing a therapeutic response. However, further studies are needed to determine whether manipulating miRNAs can influence the development and progression of inflammatory joint disorders.
  18. Muhamad SA, Muhammad NS, Ismail NDA, Mohamud R, Safuan S, Nurul AA
    Exp Ther Med, 2019 May;17(5):3867-3876.
    PMID: 30988772 DOI: 10.3892/etm.2019.7416
    Asthma is a chronic inflammatory disorder in the airways that involves the activation of cells and mediators. Lignosus rhinocerotis (Cooke) Ryvardan or Tiger Milk mushroom is a medicinal mushroom that is traditionally used to treat inflammatory diseases including asthma. In this study, the protective effects of intranasal administration of L. rhinocerotis extract (LRE) in ovalbumin (OVA)-induced airway inflammation mouse model were investigated. Mice were sensitized by intraperitoneal (i.p) injection on days 0 and 14, followed by a daily challenge with 1% OVA from days 21 to 27. Following OVA challenge, LRE and dexamethasone were administered via intranasal and i.p. injection respectively. On day 28, the level of serum immunoglobulin (Ig)E, differential cell counts and T-helper (Th) 2 cytokines in bronchoalveolar lavage fluid (BALF) fluid, cell subset population in lung-draining lymph nodes (LNs), leukocytes infiltration and mucus production in the lungs of the animals was measured. Results demonstrated that intranasal administration of LRE significantly suppressed the level of inflammatory cell counts in BALF as well as populations of CD4+ T-cells in lung draining LNs. Apart from that, LRE also significantly reduced the level of Th2 cytokines in BALF and IgE in the serum in OVA-induced asthma. Histological analysis also demonstrated the amelioration of leukocytes infiltration and mucus production in the lungs. Overall, these findings demonstrated the attenuation of airway inflammation in the LRE-treated mice therefore suggesting a promising alternative for the management of allergic airway inflammation.
  19. Johnathan M, Muhamad SA, Gan SH, Stanslas J, Mohd Fuad WE, Hussain FA, et al.
    PLoS One, 2021;16(3):e0249091.
    PMID: 33784348 DOI: 10.1371/journal.pone.0249091
    Lignosus rhinocerotis Cooke. (L. rhinocerotis) is a medicinal mushroom traditionally used in the treatment of asthma and several other diseases by the indigenous communities in Malaysia. In this study, the effects of L. rhinocerotis on allergic airway inflammation and hyperresponsiveness were investigated. L. rhinocerotis extract (LRE) was prepared by hot water extraction using soxhlet. Airway hyperresponsiveness (AHR) study was performed in house dust mite (HDM)-induced asthma in Balb/c mice while airway inflammation study was performed in ovalbumin (OVA)-induced asthma in Sprague-Dawley rats. Treatment with different doses of LRE (125, 250 and 500 mg/kg) significantly inhibited AHR in HDM-induced mice. Treatment with LRE also significantly decreased the elevated IgE in serum, Th2 cytokines in bronchoalveolar lavage fluid and ameliorated OVA-induced histological changes in rats by attenuating leukocyte infiltration, mucus hypersecretion and goblet cell hyperplasia in the lungs. LRE also significantly reduced the number of eosinophils and neutrophils in BALF. Interestingly, a significant reduction of the FOXP3+ regulatory T lymphocytes was observed following OVA induction, but the cells were significantly elevated with LRE treatment. Subsequent analyses on gene expression revealed regulation of several important genes i.e. IL17A, ADAM33, CCL5, IL4, CCR3, CCR8, PMCH, CCL22, IFNG, CCL17, CCR4, PRG2, FCER1A, CLCA1, CHIA and Cma1 which were up-regulated following OVA induction but down-regulated following treatment with LRE. In conclusion, LRE alleviates allergy airway inflammation and hyperresponsiveness, thus suggesting its therapeutic potential as a new armamentarium against allergic asthma.
  20. Mohd Noor NA, Jun Quan N, Mazlan NAAA, Nurul AA, Ahmad Mohd Zain MR, Azlan M
    Immunol Invest, 2024 Dec 19.
    PMID: 39702926 DOI: 10.1080/08820139.2024.2443244
    BACKGROUND: Exosomes can be found in the synovial fluid of inflamed knee joints, which play a significant role in osteoarthritis (OA) progression. However, their role - in modulating the cellular environment within the body, particularly monocytes remain unexplored. This study aimed to evaluate the immunomodulatory effect of exosomes on monocytes.

    METHODS: Exosomes were isolated by ultracentrifugation and characterized using nanoparticle tracking analysis (NTA), scanning electron microscopy (SEM), and Western blot. The effect of exosomes in modulating monocyte phenotypes as well as cytokine secretion were further assessed in a co-culture condition using flow cytometry and ELISA accordingly.

    RESULTS: Exosomes were identified as spherical particles with a size distribution ranging from 30 nm to 150 nm. These nanoparticles intensely expressed exosome protein markers including CD9, CD63, CD81, and HSP70. The expression of HLA-DR, CD14, and CD11b on monocytes decreased in the presence of exosomes after 24 h of incubation, regardless of the dose. Exosomes significantly induced the release of anti-inflammatory cytokines IL-1Ra in a time- and dose-dependent manner, while TNF-α secretion remains unchanged regardless of the presence or absence of exosomes.

    CONCLUSION: This study highlights the immunoregulatory role of exosomes on monocytes, emphasizing the need for further studies into the underlying mechanism.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links