Chlorhexidine gluconate and hexitidine have been used in many oral health care products as antiplaque and antigingivitis agents. Based on the clinical observations and the plaque and gingivitis scores, chlorhexidine gluconate has been reported to be a better agent. In this study, the anti-adherence properties of chlorhexidine gluconate and hexitidine on individual bacteria strains isolated from a 3-hour plaque (Streptococcus sanguis, Streptococcus mitis 1 and Actinomyces sp.) and on a whole 6-hour plaque culture were determined and compared. The study showed that chlorhexidine gluconate inhibited almost 100 % the adherence of the individual bacteria strains and 87.7 % the adherence of a whole 6-hour plaque culture to the saliva-coated glass surface. Hexitidine appeared to be more selective in its effect. It was shown to inhibit the adherence of S. sanguis and Actinomyces sp. to saliva-coated glass surface by 86.5 % and 51.4 % respectively. Its effect on the S. mitis 1 strains is comparable to that of a whole 6-hour plaque culture where inhibition to adherence were less than 4 % for both.
The tooth provides a non-shedding surface ideal for microbial and plaque accumulation. Despite being exposed to regular environmental perturbations, the microbial composition and proportions in the plaque often remains in homeostasis and is relatively stable over time. Supragingival plaque sampled from various sites on the tooth surface was pooled and conventionally analyzed for its microbial constituent. Classification of microbial isolates was made based on the characteristics exhibited by the growth colonies, Gram-stained cells, as well as biochemical reactions using the API Identification System kit. Observation was also made of the colony forming units on both non-selective and selective agar culture plates. A variety of bacteria, both of the facultative and anaerobic types, were isolated from the supragingival plaque of the Malaysian population. Among those found to predominate the supragingival plaque include the Gram positive and Gram negative cocci and rods from the genera Streptococcus, Staphylococcus, Actinomyces, Fusobacterium, Corynebacterium, Clostridium, Bacteroides, Veilonella and Lactobacillus. In addition, yeast within the genus Candida was also isolated from the plaque samples.
In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
Current work aims to study the mechanical and dynamical mechanical properties of non-woven bamboo (B)/woven kenaf (K)/epoxy (E) hybrid composites filled with nanoclay. The nanoclay-filled BK/E hybrid composites were prepared by dispersing 1 wt.% nanoclay (organically-modified montmorillonite (MMT; OMMT), montmorillonite (MMT), and halloysite nanotube (HNT)) with high shear speed homogenizer followed by hand lay-up fabrication technique. The effect of adding nanoclay on the tensile, flexural, and impact properties of the hybrid nanocomposites were studied. Fractography of tensile-fractured sample of hybrid composites was studied by field emission scanning electron microscope. The dynamic mechanical analyzer was used to study the viscoelastic properties of the hybrid nanocomposites. BK/E-OMMT exhibit enhanced mechanical properties compared to the other hybrid nanocomposites, with tensile, flexural, and impact strength values of 55.82 MPa, 105 MPa, and 65.68 J/m, respectively. Statistical analysis and grouping information were performed by one-way ANOVA (analysis of variance) and Tukey method, and it corroborates that the mechanical properties of the nanoclay-filled hybrid nanocomposites are statistically significant. The storage modulus of the hybrid nanocomposites was improved by 98.4%, 41.5%, and 21.7% with the addition of OMMT, MMT, and HNT, respectively. Morphology of the tensile fracture BK/E-OMMT composites shows that lesser voids, microcracks and fibers pull out due to strong fiber-matrix adhesion compared to other hybrid composites. Hence, the OMMT-filled BK/E hybrid nanocomposites can be utilized for load-bearing structure applications, such as floor panels and seatbacks, whereby lightweight and high strength are the main requirements.
In this study, the bacteriostatic effect of Piper betle and Psidium guajava extracts on selected early dental plaque bacteria was investigated based on changes in the doubling time (g) and specific growth rates (micro). Streptococcus sanguinis, Streptococcus mitis and Actinomyces sp. were cultured in Brain Heart Infusion (BHI) in the presence and absence of the extracts. The growth of bacteria was monitored periodically every 15 min over a period of 9 h to allow for a complete growth cycle. Growth profiles of the bacteria in the presence of the extracts were compared to those in the absence and deviation in the g and micro were determined and analyzed. It was found that the g and mu were affected by both extracts. At 4 mg mL(-1) of P. betle the g-values for S. sanguinis and S. mitis were increased by 12.0- and 10.4-fold, respectively (p < 0.05). At similar concentration P. guajava increased the g-value by 1.8- and 2.6 -fold, respectively (p < 0.05). The effect on Actinomyces sp. was observed at a much lower magnitude. It appears that P. betle and P. guajava extracts have bacteriostatic effect on the plaque bacteria by creating a stressed environment that had suppressed the growth and propagation of the cells. Within the context of the dental plaque, this would ensure the attainment of thin and healthy plaque. Thus, decoctions of these plants would be suitable if used in the control of dental plaque.
Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
The current study is motivated by the strict environmental regulations regarding the utilization and consumption of ecofriendly materials. In this context, the aim of this study has been to prepare and characterize different date palm tree (Phoenix dactylifera L.) fibers processed through the conventional water retting method. The chemical, elemental, crystallinity, thermal and morphological characterization of trunk (DPTRF), leaf stalk (DPLST), sheath or leaf sheath (DPLSH) and fruit bunch stalk (DPFBS) fibers was carried out. Chemical analysis revealed that the four types of date palm fibers display noteworthy differences in the content of cellulose, hemicellulose and lignin. Also, the amount of calcium is relatively high in all the date palm fibers; besides this, DPTRF exhibited 69.2% crystallinity, which is lower than that of DPLSH with 72.4% crystallinity. Moreover, DPLST and DPFBS fibers are more thermally stable (higher thermal degradation temperature) than DPTRF and DPLSH samples. Morphological analysis revealed that the fracture surface of DPFBS was relatively rougher, which would probably lead to increased bonding strength with polymers in composites. Overall, we conclude that DPFBS would be promising alternative sustainable and biomass material for the isolation of respective cellulose nanofibers and cellulose nanocrystals as potential reinforcement in polymer composites.
Ty1-copia-like retrotransposons have been identified and investigated in several plant species. Here, the internal region of the reverse transcriptase (RT) gene of Ty1-copia-like retrotransposons was amplified by PCR from total genomic DNA of 10 varieties of banana. Two to four clones from each variety were sequenced. Extreme heterogeneity in the sequences of Ty1-copia-like retrotransposons from all the varieties was revealed following sequence analysis of the reverse transcriptase (RT) fragments. The size of the individual RT gene fragments varied between 213 and 309 bp. Southern blots of genomic DNA digested from Musa acuminata and other banana varieties probed with W8 clone from M. acuminata and A4 clone from Pisang Abu Nipah showed similar strong, multiple restriction fragments together with other faint hybridization band patterns with variable intensities indicating the presence of many copies of the Ty1-copia-like retrotransposons in the genomes. There was no correlation between retroelement sequence and the banana species (with A or B genomes) from which it arose, suggesting that the probes are not useful for tracking genomes through breeding populations.
We demonstrate the preparation of nanostructures cobalt oxide/reduced graphene oxide (Co3O4/rGO) nanocomposites by a simple one-step cost-effective hydrothermal technique for possible electrode materials in supercapacitor application. The X-ray diffraction patterns were employed to confirm the nanocomposite crystal system of Co3O4/rGO by demonstrating the existence of normal cubic spinel structure of Co3O4 in the matrix of Co3O4/rGO nanocomposite. FTIR and FT-Raman studies manifested the structural behaviour and quality of prepared Co3O4/rGO nanocomposite. The optical properties of the nanocomposite Co3O4/rGO have been investigated by UV absorption spectra. The SEM/TEM images showed that the Co3O4 nanoparticles in the Co3O4/rGO nanocomposites were covered over the surface of the rGO sheets. The electrical properties were analyzed in terms of real and imaginary permittivity, dielectric loss and AC conductivity. The electrocatalytic activities of synthesized Co3O4/rGO nanocomposites were determined by cyclic voltammetry and charge-discharge cycle to evaluate the supercapacitive performance. The specific capacitance of 754 Fg-1 was recorded for Co3O4/rGO nanocomposite based electrode in three electrode cell system. The electrode material exhibited an acceptable capability and excellent long-term cyclic stability by maintaining 96% after 1000 continuous cycles. These results showed that the prepared sample could be an ideal candidate for high-energy application as electrode materials. The synthesized Co3O4/rGO nanocomposite is a versatile material and can be used in various application such as fuel cells, electrochemical sensors, gas sensors, solar cells, and photocatalysis.
Objective: To present the report from the Kuwait National Primary Immunodeficiency Registry between 2004 and 2018. Methods: The patients were followed prospectively between January 2004 and December 2018 and their collected data included sociodemographic, diagnosis, clinical presentation, laboratory tests, and treatment. Results: A total of 314 PID patients (165 males and 149 females) were registered during the study period. Most of the patients (n = 287, 91.4%) were Kuwaiti nationals and the prevalence among Kuwaitis was 20.27/100,000 with a cumulative incidence of 24.96/100,000 Kuwaitis. The distribution of the patients according to PID categories was as follow: immunodeficiencies affecting cellular and humoral immunity, 100 patients (31.8%); combined immunodeficiencies with associated syndromic features, 68 patients (21.7%); predominantly antibody deficiencies, 56 patients (17.8%); diseases of immune dysregulation, 47 patients (15%); congenital defects of phagocyte number or function, 20 patients (6.4%); autoinflammatory disorders, 1 patient (0.3%); and complement deficiencies, 22 patients (7%). The mean age of the patients at onset of symptoms was 26 months while the mean age at diagnosis was 53 months and the mean delay in diagnosis was 27 months. Most of the patients (n = 272, 86%) had onset of symptoms before the age of 5 years. Parental consanguinity rate within the registered patients was 78% and a positive family history of PID was noticed in 50% of the patients. Genetic testing was performed in 69% of the patients with an overall diagnostic yield of 90%. Mutations were identified in 46 different genes and more than 90% of the reported genetic defects were transmitted by an autosomal recessive pattern. Intravenous immunoglobulins and stem cell transplantation were used in 58% and 25% of the patients, respectively. There were 81 deaths (26%) among the registered patients with a mean age of death of 25 months. Conclusions: PID is not infrequent in Kuwait and the reported prevalence is the highest in the literature with increased proportion of more severe forms. Collaborative efforts including introduction of newborn screening should be implemented to diagnose such cases earlier and improve the quality of life and prevent premature deaths.