DESIGN: Death-related data were retrospectively and prospectively assessed in a longitudinal regional cohort study.
METHODS: Children under routine HIV care at sites in Cambodia, India, Indonesia, Malaysia, Thailand, and Vietnam between 2008 and 2017 were followed. Causes of death were reported and then independently and centrally reviewed. Predictors were compared using competing risks survival regression analyses.
RESULTS: Among 5918 children, 5523 (93%; 52% male) had ever been on combination antiretroviral therapy. Of 371 (6.3%) deaths, 312 (84%) occurred in those with a history of combination antiretroviral therapy (crude all-cause mortality 9.6 per 1000 person-years; total follow-up time 32 361 person-years). In this group, median age at death was 7.0 (2.9-13) years; median CD4 cell count was 73 (16-325) cells/μl. The most common underlying causes of death were pneumonia due to unspecified pathogens (17%), tuberculosis (16%), sepsis (8.0%), and AIDS (6.7%); 12% of causes were unknown. These clinical diagnoses were further grouped into AIDS-related infections (22%) and noninfections (5.8%), and non-AIDS-related infections (47%) and noninfections (11%); with 12% unknown, 2.2% not reviewed. Higher CD4 cell count and better weight-for-age z-score were protective against death.
CONCLUSION: Our standardized cause of death assessment provides robust data to inform regional resource allocation for pediatric diagnostic evaluations and prioritization of clinical interventions, and highlight the continued importance of opportunistic and nonopportunistic infections as causes of death in our cohort.
METHODS: Data (2014-2018) from a regional cohort of Asian PHIVA who received at least 6 months of continuous cART were analyzed. Treatment failure was defined according to World Health Organization criteria. Descriptive analyses were used to report treatment failure and subsequent management and evaluate postfailure CD4 count and viral load trends. Kaplan-Meier survival analyses were used to compare the cumulative incidence of death and loss to follow-up (LTFU) by treatment failure status.
RESULTS: A total 3196 PHIVA were included in the analysis with a median follow-up period of 3.0 years, of whom 230 (7.2%) had experienced 292 treatment failure events (161 virologic, 128 immunologic, 11 clinical) at a rate of 3.78 per 100 person-years. Of the 292 treatment failure events, 31 (10.6%) had a subsequent cART switch within 6 months, which resulted in better immunologic and virologic outcomes compared to those who did not switch cART. The 5-year cumulative incidence of death and LTFU following treatment failure was 18.5% compared to 10.1% without treatment failure.
CONCLUSIONS: Improved implementation of virologic monitoring is required to realize the benefits of virologic determination of cART failure. There is a need to address issues related to accessibility to subsequent cART regimens, poor adherence limiting scope to switch regimens, and the role of antiretroviral resistance testing.
METHODS: Children enrolled in the TREAT Asia Pediatric HIV Observational Database were included if they started antiretroviral therapy (ART) on or after January 1st, 2008. Factors associated with severe recurrent bacterial pneumonia were assessed using competing-risk regression.
RESULTS: A total of 3,944 children were included in the analysis; 136 cases of severe recurrent bacterial pneumonia were reported at a rate of 6.5 [95% confidence interval (CI): 5.5-7.7] events per 1,000 patient-years. Clinical factors associated with severe recurrent bacterial pneumonia were younger age [adjusted subdistribution hazard ratio (aHR): 4.4 for <5 years versus ≥10 years, 95% CI: 2.2-8.4, P < 0.001], lower weight-for-age z-score (aHR: 1.5 for -2.0, 95% CI: 1.1-2.3, P = 0.024), pre-ART diagnosis of severe recurrent bacterial pneumonia (aHR: 4.0 versus no pre-ART diagnosis, 95% CI: 2.7-5.8, P < 0.001), past diagnosis of symptomatic lymphoid interstitial pneumonitis or chronic HIV-associated lung disease, including bronchiectasis (aHR: 4.8 versus no past diagnosis, 95% CI: 2.8-8.4, P < 0.001), low CD4% (aHR: 3.5 for <10% versus ≥25%, 95% CI: 1.9-6.4, P < 0.001) and detectable HIV viral load (aHR: 2.6 versus undetectable, 95% CI: 1.2-5.9, P = 0.018).
CONCLUSIONS: Children <10-years-old and those with low weight-for-age, a history of respiratory illness, low CD4% or poorly controlled HIV are likely to gain the greatest benefit from targeted prevention and treatment programs to reduce the burden of bacterial pneumonia in children living with HIV.
METHODS: CLHIV were considered to have lipid or glucose abnormalities if they had total cholesterol ≥200 mg/dL, high-density lipoprotein (HDL) ≤35 mg/dL, low-density lipoprotein (LDL) ≥100 mg/dL, triglycerides (TG) ≥110 mg/dL, or fasting glucose >110 mg/dL. Factors associated with lipid and glucose abnormalities were assessed by logistic regression.
RESULTS: Of 951 CLHIV, 52% were male with a median age of 8.0 (interquartile range [IQR] 5.0-12.0) years at ART start and 15.0 (IQR 12.0-18.0) years at their last clinic visit. 89% acquired HIV perinatally, and 30% had ever used protease inhibitors (PIs). Overall, 225 (24%) had hypercholesterolemia, 105 (27%) low HDL, 213 (58%) high LDL, 369 (54%) hypertriglyceridemia, and 130 (17%) hyperglycemia. Hypercholesterolemia was more likely among females (versus males, aOR 1.93, 95% CI 1.40-2.67). Current PIs use was associated with hypercholesterolemia (current use: aOR 1.54, 95% CI 1.09-2.20); low HDL (current use: aOR 3.16, 95% CI 1.94-5.15; prior use: aOR 10.55, 95% CI 2.53-43.95); hypertriglyceridemia (current use: aOR 3.90, 95% CI 2.65-5.74; prior use: aOR 2.89, 95% CI 1.31-6.39); high LDL (current use: aOR 1.74, 95% CI 1.09-2.76); and hyperglycemia (prior use: aOR 2.43, 95% CI 1.42-4.18).
CONCLUSION: More than half and one-fifth of CLHIV have dyslipidemia and hyperglycemia, respectively. Routine paediatric HIV care should include metabolic monitoring. The association between PIs use and dyslipidemia emphasizes the importance of rapidly transitioning to integrase inhibitor-containing regimens.