Displaying all 13 publications

Abstract:
Sort:
  1. Goh KL, Makaremi M, Pasbakhsh P, De Silva R, Zivkovic V
    Data Brief, 2018 Dec;21:2170-2178.
    PMID: 30555856 DOI: 10.1016/j.dib.2018.11.039
    The mechanical properties of electrospun polyacrylonitrile (PAN)-based membranes for ultrafiltration, such as oil-water separation and heavy metals from water, are often characterised in the dry state but little is known about the membrane properties in the hydrated state. This dataset comprised mechanical properties and structure-related properties of electrospun PAN-based membranes. The mechanical dataset described the yield strength and strain, stiffness, resilience energy, fracture strength, strain at fracture and fracture toughness of electrospun neat PAN and halloysite nanotube (HNT) reinforced PAN membranes in both hydrated and dry states. The data related to the hydrated state were derived from direct measurements of the mechanical properties of the PAN-based membrane using a novel environmental micromechanical tester. The structure-related dataset comprised electron micrographs and quantitative measurements (fibre diameter and pore diameter) derived from the micrographs. For further interpretation and discussion of the dataset, the reader is referred to the research data article, "Direct measurement of the elasticity and fracture properties of electrospun polyacrylonitrile/halloysite fibrous mesh in water" (Govindasamy et al., 2014).
  2. Lisuzzo L, Cavallaro G, Pasbakhsh P, Milioto S, Lazzara G
    J Colloid Interface Sci, 2019 Jul 01;547:361-369.
    PMID: 30974251 DOI: 10.1016/j.jcis.2019.04.012
    The filling of halloysite nanotubes with active compounds solubilized in aqueous solvent was investigated theoretically and experimentally. Based on Knudsen thermogravimetric data, we demonstrated the water confinement within the cavity of halloysite. This process is crucial to properly describe the driving mechanism of halloysite loading. In addition, Knudsen thermogravimetric experiments were conducted on kaolinite nanoplates as well as on halloysite nanotubes modified with an anionic surfactant (sodium dodecanoate) in order to explore the influence of both the nanoparticle morphology and the hydrophobic/hydrophilic character of the lumen on the confinement phenomenon. The analysis of the desorption isotherms allowed us to determine the water adsorption properties of the investigated nanoclays. The pore sizes of the nanotubes' lumen was determined by combining the vapor pressure of the confined water with the nanoparticles wettability, which was studied through contact angle measurements. The thermodynamic description of the water confinement inside the lumen was correlated to the influence of the vacuum pumping in the experimental loading of halloysite. Metoprolol tartrate, salicylic acid and malonic acid were selected as anionic guest molecules for the experimental filling of the positively charged halloysite lumen. According to the filling mechanism induced by the water confinement, the vacuum operation and the reduced pressure enhanced the loading of halloysite nanotubes for all the investigated bioactive compounds. This work represents a further and crucial step for the development of halloysite based nanocarriers being that the filling mechanism of the nanotube's cavity from aqueous dispersions was described according to the water confinement process.
  3. Hia IL, Pasbakhsh P, Chan ES, Chai SP
    Sci Rep, 2016 10 03;6:34674.
    PMID: 27694922 DOI: 10.1038/srep34674
    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.
  4. Makaremi M, Yousefi H, Cavallaro G, Lazzara G, Goh CBS, Lee SM, et al.
    Polymers (Basel), 2019 Sep 29;11(10).
    PMID: 31569482 DOI: 10.3390/polym11101594
    Extensive usage of long-lasting petroleum based plastics for short-lived application such as packaging has raised concerns regarding their role in environmental pollution. In this research, we have developed active, healable, and safely dissolvable alginate-pectin based biocomposites that have potential applications in food packaging. The morphological study revealed the rough surface of these biocomposite films. Tensile properties indicated that the fabricated samples have mechanical properties in the range of commercially available packaging films while possessing excellent healing efficiency. Biocomposite films exhibited higher hydrophobicity properties compared to neat alginate films. Thermal analysis indicated that crosslinked biocomposite samples possess higher thermal stability in temperatures below 120 °C, while antibacterial analysis against E. coli and S. aureus revealed the antibacterial properties of the prepared samples against different bacteria. The fabricated biodegradable multi-functional biocomposite films possess various imperative properties, making them ideal for utilization as packaging material.
  5. Fahimizadeh M, Diane Abeyratne A, Mae LS, Singh RKR, Pasbakhsh P
    Materials (Basel), 2020 Aug 22;13(17).
    PMID: 32842561 DOI: 10.3390/ma13173711
    Crack formation in concrete is one of the main reasons for concrete degradation. Calcium alginate capsules containing biological self-healing agents for cementitious materials were studied for the self-healing of cement paste and mortars through in vitro characterizations such as healing agent survivability and retention, material stability, and biomineralization, followed by in situ self-healing observation in pre-cracked cement paste and mortar specimens. Our results showed that bacterial spores fully survived the encapsulation process and would not leach out during cement mixing. Encapsulated bacteria precipitated CaCO3 when exposed to water, oxygen, and calcium under alkaline conditions by releasing CO32- ions into the cement environment. Capsule rupture is not required for the initiation of the healing process, but exposure to the right conditions are. After 56 days of wet-dry cycles, the capsules resulted in flexural strength regain as high as 39.6% for the cement mortar and 32.5% for the cement paste specimens. Full crack closure was observed at 28 days for cement mortars with the healing agents. The self-healing system acted as a biological CO32- pump that can keep the bio-agents retained, protected, and active for up to 56 days of wet-dry incubation. This promising self-healing strategy requires further research and optimization.
  6. Makaremi M, Pasbakhsh P, Cavallaro G, Lazzara G, Aw YK, Lee SM, et al.
    ACS Appl Mater Interfaces, 2017 May 24;9(20):17476-17488.
    PMID: 28481104 DOI: 10.1021/acsami.7b04297
    Pectin bionanocomposite films filled with various concentrations of two different types of halloysite nanotubes were prepared and characterized in this study as potential films for food packaging applications. The two types of halloysite nanotubes were long and thin (patch) (200-30 000 nm length) and short and stubby (Matauri Bay) (50-3000 nm length) with different morphological, physical, and dispersibility properties. Both matrix (pectin) and reinforcer (halloysite nanotubes) used in this study are considered as biocompatible, natural, and low-cost materials. Various characterization tests including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, release kinetics, contact angle, and dynamic mechanical analysis were performed to evaluate the performance of the pectin films. Exceptional thermal, tensile, and contact angle properties have been achieved for films reinforced by patch halloysite nanotubes due to the patchy and lengthy nature of these tubes, which form a bird nest structure in the pectin matrix. Matauri Bay halloysite nanotubes were dispersed uniformly and individually in the matrix in low and even high halloysite nanotube concentrations. Furthermore, salicylic acid as a biocidal agent was encapsulated in the halloysite nanotubes lumen to control its release kinetics. On this basis, halloysite nanotubes/salicylic acid hybrids were dispersed into the pectin matrix to develop functional biofilms with antimicrobial properties that can be extended over time. Results revealed that shorter nanotubes (Matauri Bay) had better ability for the encapsulation of salicylic acid into their lumen, while patchy structure and longer tubes of patch halloysite nanotubes made the encapsulation process more difficult, as they might need more time and energy to be fully loaded by salicylic acid. Moreover, antimicrobial activity of the films against four different strains of Gram-positive and Gram-negative bacteria indicated the effective antimicrobial properties of pectin/halloysite functionalized films and their potential to be used for food packaging applications.
  7. Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J
    Colloids Surf B Biointerfaces, 2020 Apr;188:110713.
    PMID: 31884080 DOI: 10.1016/j.colsurfb.2019.110713
    Electrospinning is a common method to prepare nanofiber scaffolds for tissue engineering. One of the common cellulose esters, cellulose acetate butyrate (CAB), has been electrospun into nanofibers and studied. However, the intrinsic hydrophobicity of CAB limits its application in tissue engineering as it retards cell adhesion. In this study, the properties of CAB nanofibers were improved by fabricating the composite nanofibers made of CAB and hydrophilic polyethylene glycol (PEG). Different ratios of CAB to PEG were tested and only the ratio of 2:1 resulted in smooth and bead-free nanofibers. The tensile test results show that CAB/PEG composite nanofibers have 2-fold higher tensile strength than pure CAB nanofibers. The hydrophobicity of the composite nanofibers was also reduced based on the water contact angle analysis. As the hydrophilicity increases, the swelling ability of the composite nanofiber increases by 2-fold with more rapid biodegradation. The biocompatibility of the nanofibers was tested with normal human dermal fibroblasts (NHDF). The cell viability assay results revealed that the nanofibers are non-toxic. In addition to that, CAB/PEG nanofibers have better cell attachment compared to pure CAB nanofibers. Based on this study, CAB/PEG composite nanofibers could potentially be used as a nanofiber scaffold for applications in tissue engineering.
  8. Auckloo SAB, Palaniandy K, Hung YM, Lazzara G, Chai SP, Pasbakhsh P
    Nanomaterials (Basel), 2021 Nov 08;11(11).
    PMID: 34835761 DOI: 10.3390/nano11112998
    This study, for the first time, focused on the fabrication of nonporous polyurea thin films (~200 microns) using the electrospinning method as a novel approach for coating applications. Multi-walled carbon nanotubes (MWCNTs) and hydrophilic-fumed nanosilica (HFNS) were added separately into electrospun polyurea films as nano-reinforcing fillers for the enhancement of properties. Neat polyurea films demonstrated a tensile strength of 14 MPa with an elongation of 360%. At a loading of 0.2% of MWCNTs, the highest tensile strength of 21 MPa and elongation of 402% were obtained, while the water contact angle remained almost unchanged (89°). Surface morphology analysis indicated that the production of polyurea fibers during electrospinning bonded together upon curing, leading to a nonporous film. Neat polyurea exhibited high thermal resistance with a degradation temperature of 380 °C. Upon reinforcement with 0.2% of MWCNTs and 0.4% of HFNS, it increased by ~7 °C. The storage modulus increased by 42 MPa with the addition of 0.2% of MWCNTs, implying a superior viscoelasticity of polyurea nanocomposite films. The results were benchmarked with anti-corrosive polymer coatings from the literature, revealing that the production of nonporous polyurea coatings with robust strength, elasticity, and thermal properties was achieved. Electrospun polyurea coatings are promising candidates as flexible anti-corrosive coatings for heat exchanges and electrical wires.
  9. Ng BJ, Putri LK, Kong XY, Teh YW, Pasbakhsh P, Chai SP
    Adv Sci (Weinh), 2020 Apr;7(7):1903171.
    PMID: 32274312 DOI: 10.1002/advs.201903171
    As the world decides on the next giant step for the renewable energy revolution, scientists have begun to reinforce their headlong dives into the exploitation of solar energy. Hitherto, numerous attempts are made to imitate the natural photosynthesis of plants by converting solar energy into chemical fuels which resembles the "Z-scheme" process. A recreation of this system is witnessed in artificial Z-scheme photocatalytic water splitting to generate hydrogen (H2). This work outlines the recent significant implication of the Z-scheme system in photocatalytic water splitting, particularly in the role of electron mediator and the key factors that improve the photocatalytic performance. The Review begins with the fundamental rationales in Z-scheme water splitting, followed by a survey on the development roadmap of three different generations of Z-scheme system: 1) PS-A/D-PS (first generation), 2) PS-C-PS (second generation), and 3) PS-PS (third generation). Focus is also placed on the scaling up of the "leaf-to-tree" challenge of Z-scheme water splitting system, which is also known as Z-scheme photocatalyst sheet. A detailed investigation of the Z-scheme system for achieving H2 evolution from past to present accompanied with in-depth discussion on the key challenges in the area of Z-scheme photocatalytic water splitting are provided.
  10. Goh CBS, Wong LW, Parimannan S, Rajandas H, Loke S, Croft L, et al.
    Int J Syst Evol Microbiol, 2020 Dec;70(12):6355-6363.
    PMID: 33146596 DOI: 10.1099/ijsem.0.004539
    A Gram-negative, filamentous aerobic bacterium designated as strain Mgbs1T was isolated on 12 April 2017 from the subsurface soil and leaf litter substrate at the base of a Koompassia malaccensis tree in a tropical peat swamp forest in the northern regions of the state of Selangor, Malaysia (3° 39' 04.7' N 101° 17' 43.7'' E). Phylogenetic analyses based on the full 16S rRNA sequence revealed that strain Mgbs1T belongs to the genus Chitinophaga with the greatest sequence similarity to Chitinophaga terrae KP01T (97.65 %), Chitinophaga jiangningensis DSM27406T (97.58 %), and Chitinophaga dinghuensis DHOC24T (97.17 %). The major fatty acids of strain Mgbs1T (>10 %) are iso-C15 : 0, C16 : 1 ω5c and iso-C17 : 0 3-OH while the predominant respiratory quinone is menaquinone-7. Strain Mgbs1T has a complete genome size of 8.03 Mb, with a G+C content of 48.5 mol%. The DNA-DNA hybridization (DDH) score between strain Mgbs1T and C. jiangningensis DSM27406T was 15.9 %, while in silico DDH values of strain Mgbs1T against C. dinghuensis DHOC24T and C. terrae KP01T were 20.0 and 19.10% respectively. Concurrently, Average Nucleotide Identity (ANI) scores between strain Mgbs1T against all three reference strains are 73.2 %. Based on the phenotypic, chemotaxonomic, and phylogenetic consensus, strain Mgbs1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga extrema sp. nov. is proposed (=DSM 108835T=JCM 33276T).
  11. Abdi M, Pasbakhsh P, Shabani M, Nekoonam S, Sadeghi A, Fathi F, et al.
    Neurotox Res, 2021 Dec;39(6):1732-1746.
    PMID: 34570348 DOI: 10.1007/s12640-021-00417-y
    Multiple sclerosis (MS) is a chronic disorder characterized by reactive gliosis, inflammation, and demyelination. Microglia plays a crucial role in the pathogenesis of MS and has the dynamic plasticity to polarize between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Metformin, a glucose-lowering drug, attenuates inflammatory responses by activating adenosine monophosphate protein kinase (AMPK) which suppresses nuclear factor kappa B (NF-κB). In this study, we indirectly investigated whether metformin therapy would regulate microglia activity in the cuprizone (CPZ)-induced demyelination mouse model of MS via measuring the markers associated with pro- and anti-inflammatory microglia. Evaluation of myelin by luxol fast blue staining revealed that metformin treatment (CPZ + Met) diminished demyelination, in comparison to CPZ mice. In addition, metformin therapy significantly alleviated reactive microgliosis and astrogliosis in the corpus callosum, as measured by Iba-1 and GFAP staining. Moreover, metformin treatment significantly downregulated the expression of pro-inflammatory associated genes (iNOS, H2-Aa, and TNF-α) in the corpus callosum, whereas expression of anti-inflammatory markers (Arg1, Mrc1, and IL10) was not promoted, compared to CPZ mice. Furthermore, protein levels of iNOS (pro-inflammatory marker) were significantly decreased in the metformin group, while those of Trem2 (anti-inflammatory marker) were increased. In addition, metformin significantly increased AMPK activation in CPZ mice. Finally, metformin administration significantly reduced the activation level of NF-κB in CPZ mice. In summary, our data revealed that metformin attenuated pro-inflammatory microglia markers through suppressing NF-κB activity. The positive effects of metformin on microglia and remyelination suggest that it could be used as a promising candidate to lessen the incidence of inflammatory neurodegenerative diseases such as MS.
  12. Goh CBS, Goh CHP, Wong LW, Cheng WT, Yule CM, Ong KS, et al.
    Lab Chip, 2022 Jan 18;22(2):387-402.
    PMID: 34935836 DOI: 10.1039/d1lc00723h
    The full plethora of environmental bacteria is often poorly represented in vitro as the majority remain difficult, if not impossible, to culture under standard laboratory settings. These bacteria often require native conditions for the formation of cell masses that collectively have higher chances of survival. With that, a 3D-printed version of the isolation chip (iChip) was used to cultivate bacteria from a tropical peat swamp in situ prior to growth and maintenance in vitro. Briefly, plates made from either acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), or epoxy resin were tested in terms of their usability and durability under acidic conditions similar to those of peat matter. The epoxy resin plates were then found to be most optimal for the sampling conditions. Peat soil samples were collected from the base of a Koompassia malaccensis tree and reconstituted in molten 10% (wt/vol) tryptone soy agar (TSA) prior to inoculation. The iChips were subsequently assembled and buried in the site of origin. As a comparison, bacteria from the same soil sample were cultivated directly on TSA and incubated at 28 °C for two weeks. Thereafter, agar plugs from the iChip were transferred to TSA plates to allow microcolonies within each plug to grow. Each pure isolate from both cultivation approaches that grew was then pooled and extracted for total DNA prior to 16S rRNA gene amplification and sequencing via Illumina MiSeq. Taxonomic abundance comparison revealed that the bacterial taxa at the level of order were significantly different between the two approaches, particularly in the orders, Burkholderiales, Xanthomonodales, Enterobacteriales, and Actinomycetales (differences of 12.0, 7.1, 8.0, and 4.2%, respectively). This indicated that the 3D-printed iChips present a possible low-cost tool for the isolation of bacterial genera that may not be able to grow on media directly in vitro.
  13. Aksu F, Topacoglu H, Arman C, Atac A, Tetik S, Hasanovic A, et al.
    Surg Radiol Anat, 2009 Sep;31 Suppl 1:95-229.
    PMID: 27392492 DOI: 10.1007/BF03371486
    Conference abstracts: Malaysia in affiliation
    (1). PO-211. AGE-SPECIFIC STRESS-MODULATED
    CHANGES OF SPLENIC IMMUNOARCHITECTURE
    IN THE GROWING BODY. Marina Yurievna Kapitonova, Syed Baharom Syed Ahmad Fuad, Flossie Jayakaran; Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, Malaysia
    syedbaharom@salam.uitm.edu.my
    (2). PO-213. A DETAILED OSTEOLOGICAL STUDY OF THE ANOMALOUS GROOVES NEAR THE
    MASTOID NOTCH OF THE SKULL. ISrijit Das, 2Normadiah Kassim, lAzian Latiff, IFarihah Suhaimi, INorzana Ghafar, lKhin Pa Pa Hlaing, lIsraa Maatoq, IFaizah Othman; I Department of Anatomy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 2 Department of Anatomy, Universiti Malaya, Kuala Lumpur, Malaysia. das_sri jit23@rediffmail.com
    (3). PO-21S. FIRST LUMBRICAL MUSCLE OF THE
    PALM: A DETAILED ANATOMICAL STUDY WITH
    CLINICAL IMPLICATIONS. Srijit Das, Azian Latiff, Parihah Suhaimi, Norzana Ghafar, Khin Pa Pa Hlaing, Israa Maatoq, Paizah Othman; Department of Anatomy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. das_srijit23@rediffmail.com
    (4). PO-336. IMPROVEMENT IN EXPERIMENTALLY
    INDUCED INFRACTED CARDIAC FUNCTION
    FOLLOWING TRANSPLANTATION OF HUMAN
    UMBILICAL CORD MATRIX-DERIVED
    MESENCHYMAL CELLS. lSeyed Noureddin Nematollahi-Mahani, lMastafa Latifpour, 2Masood Deilami, 3Behzad Soroure-Azimzadeh, lSeyed
    Hasan Eftekharvaghefi, 4Fatemeh Nabipour, 5Hamid
    Najafipour, 6Nouzar Nakhaee, 7Mohammad Yaghoobi, 8Rana Eftekharvaghefi, 9Parvin Salehinejad, IOHasan Azizi; 1 Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran; 2 Department of Cardiosurgery, Hazrat-e Zahra Hospital, Kerman, Iran; 3 Department of Cardiology, Kerman University of Medical Sciences, Kerman, Iran; 4 Department of Pathology, Kerman University of Medical Sciences, Kerman, Iran; 5 Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran; 6 Department of Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran; 7 Department
    of Biotechnology, Research Institute of Environmental Science, International Center for Science, High Technology & Environmental Science, Kerman, Iran; 8 Students Research Center, Kerman University of Medical Sciences, Kerman, Iran; 9 Institute of Bioscience, University Putra Malaysia,
    Kuala Lumpur, Malaysia; 10 Department of Stem Cell, Cell Science Research Center, Royan Institute, ACECR, Tehran, Iran. nnematollahi@kmu.ac.ir
    (5).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links