Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Mak KK, Pichika MR
    Drug Discov Today, 2019 03;24(3):773-780.
    PMID: 30472429 DOI: 10.1016/j.drudis.2018.11.014
    Artificial intelligence (AI) uses personified knowledge and learns from the solutions it produces to address not only specific but also complex problems. Remarkable improvements in computational power coupled with advancements in AI technology could be utilised to revolutionise the drug development process. At present, the pharmaceutical industry is facing challenges in sustaining their drug development programmes because of increased R&D costs and reduced efficiency. In this review, we discuss the major causes of attrition rates in new drug approvals, the possible ways that AI can improve the efficiency of the drug development process and collaboration of pharmaceutical industry giants with AI-powered drug discovery firms.
  2. Mai CW, Kang YB, Pichika MR
    Onco Targets Ther, 2013;6:1573-87.
    PMID: 24235843 DOI: 10.2147/OTT.S50838
    Toll-like receptor 4 (TLR-4) is well known for its host innate immunity. Despite the fact that TLR-4 activation confers antitumor responses; emerging evidence suggests that TLR-4 is associated with tumor development and progression. It is now clear that overactivation of TLR-4, through various immune mediators, may cause immune response dysfunction, resulting in tumorigenesis. Different cancers could have different extents of TLR-4 involvement during tumorigenesis or tumor progression. In this review, we focus on infection- and inflammation-related TLR-4 activation in noncancer and cancer cells, as well as on the current evidence about the role of TLR-4 in ten of the most common cancers, viz, head and neck cancer, lung cancer, gastrointestinal cancer, liver cancer, pancreatic cancer, skin cancer, breast cancer, ovarian cancer, cervical cancer, and prostate cancer.
  3. Pichika MR, Kang YB, Ng SW
    PMID: 24046652 DOI: 10.1107/S1600536813015675
    In the title compound, C17H14Cl2O3, the two benzene rings are twisted by 73.6 (2)°. The twist is similar to that found in the unsubstituted compound, viz. phenyl benzoate. In the crystal, inversion dimers are linked by pairs of C-H⋯O inter-actions.
  4. Pichika MR, Kang YB, Ng SW
    PMID: 24046651 DOI: 10.1107/S1600536813015791
    In the title compound, C17H16O3, the benzene rings are twisted by 63.54 (5)°. The twist is similar to that found in the unsubstituted compound, phenyl benzoate. The crystal packing features C-H⋯O hydrogen bonds.
  5. Pichika MR, Yew BK, Ng SW
    PMID: 23795011 DOI: 10.1107/S1600536813011458
    In the title compound, C18H18O4, the planes of the benzene rings are twisted by 81.60 (5)°. In the crystal, weak C-H⋯O hydrogen bonds link the mol-ecules into supra-molecular chains extending along the a axis.
  6. Mak KK, Epemolu O, Pichika MR
    Drug Discov Today, 2021 Nov 10.
    PMID: 34774767 DOI: 10.1016/j.drudis.2021.11.005
    The successful regulatory authority approval rate of drug candidates in the drug development pipeline is crucial for determining pharmaceutical research and development (R&D) efficiency. Regulatory authorities include the US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceutical and Food Safety Bureau Japan (PFSB), among others. Optimal drug metabolism and pharmacokinetics (DMPK) properties influence the progression of a drug candidate from the preclinical to the clinical phase. In this review, we provide a comprehensive assessment of essential concepts, methods, improvements, and challenges in DMPK science and its significance in drug development. This information provides insights into the association of DMPK science with pharmaceutical R&D efficiency.
  7. Mak KK, Balijepalli MK, Pichika MR
    Expert Opin Drug Discov, 2022 Jan;17(1):79-92.
    PMID: 34553659 DOI: 10.1080/17460441.2022.1985108
    INTRODUCTION: Artificial intelligence (AI) in drug discovery and development (DDD) has gained more traction in the past few years. Many scientific reviews have already been made available in this area. Thus, in this review, the authors have focused on the success stories of AI-driven drug candidates and the scientometric analysis of the literature in this field.

    AREA COVERED: The authors explore the literature to compile the success stories of AI-driven drug candidates that are currently being assessed in clinical trials or have investigational new drug (IND) status. The authors also provide the reader with their expert perspectives for future developments and their opinions on the field.

    EXPERT OPINION: Partnerships between AI companies and the pharma industry are booming. The early signs of the impact of AI on DDD are encouraging, and the pharma industry is hoping for breakthroughs. AI can be a promising technology to unveil the greatest successes, but it has yet to be proven as AI is still at the embryonic stage.

  8. Balijepalli MK, Tandra S, Pichika MR
    Pharmacognosy Res, 2010 Mar;2(2):113-9.
    PMID: 21808551 DOI: 10.4103/0974-8490.62949
    Low risk of breast cancer has been proposed to be associated with high intake of lignans. We have reported the presence of lignans in Gmelina asiatica roots. There are no scientific reports on the antiproliferative activity of G. asiatica roots. The objective of the present study was to evaluate the effect of ethyl acetate extract from G. asiatica roots (EGAR) on estrogen receptor-positive (MCF-7) and negative (MDA-MB-231) human breast cancer cell lines. The effects of 50% inhibitory concentrations (IC(50)) of EGAR on MCF-7 and MDA-MB-231 cells were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay kit. The mode of cell death caused by EGAR was determined using dual apoptosis assay kit by observing the cells under fluorescent microscope. The quantification of apoptosis and necrosis in cells caused by EGAR was determined using cell death detection kit through ELISA. Down-regulation of the proliferative activity occurred in a clear dose-dependent response with IC(50) values of 32.9 ± 3.8 μg/mL in MCF-7 and 19.9 ± 2.3 μg/mL in MDA-MB-231 cell lines. Treatment of breast cancer cells with EGAR resulted in significant apoptosis. The EGAR contain lignans and flavonoids. The antiproliferative activity of the extract is attributed to the presence of these secondary metabolites. The results suggest the efficacy of G. asiatica roots as antiproliferative agents on human breast cancer cells, supporting the hypothesis that plants containing lignans have beneficial effects on human breast cancer.
  9. Swamy KB, Hadi SA, Sekaran M, Pichika MR
    J Med Food, 2014 Nov;17(11):1165-9.
    PMID: 25314134 DOI: 10.1089/jmf.2013.3084
    Synsepalum dulcificum or the "miracle fruit" is well known for its taste-modifying ability. The aim of this review was to assess the published medically beneficial as well as potential characteristics of this fruit. A search in three databases, including PubMed, ScienceDirect, and Google Scholar, was made with appropriate keywords. The resulting articles were screened in different stages based on the title, abstract, and content. A total of nine articles were included in this review. This review summarized the findings of previously published studies on the effects of miracle fruit. The main studied characteristic of the fruit was its effect on the taste receptors, resulting in the sweet sensation when substances with acidic content were ingested. This effect was shown to be related to a glycoprotein called "miraculin." Other beneficial characteristics of this fruit were its antioxidant and anticancer abilities that are due to the various amides existing in the miracle fruit. Apart from the above, the other observed effect of this fruit was its antidiabetic effect that was tested in rats. Further studies should be conducted to establish the findings. The miracle fruit can be a healthy additive due to its unique characteristics, including sour taste sensation modification as well as its antioxidant and antidiabetic effects.
  10. Buru AS, Pichika MR, Neela V, Mohandas K
    J Ethnopharmacol, 2014 May 14;153(3):587-95.
    PMID: 24613273 DOI: 10.1016/j.jep.2014.02.044
    Cinnamomum species have been widely used in many traditional systems of medicine around the world. In the Malaysian traditional system of medicine, the leaves, stem bark and stem wood of Cinnamomum iners, Cinnamomum porrectum, Cinnamomum altissimum and Cinnamomum impressicostatum have been used to treat wound infections. To study the antibacterial effects of Cinnamomum iners, Cinnamomum porrectum, Cinnamomum altissimum and Cinnamomum impressicostatum against common bacteria found in wound infections with primary focus on methicillin-resistant Staphylococcus aureus (MRSA).
  11. Mai CW, Kang YB, Hamzah AS, Pichika MR
    Food Funct, 2018 Jun 20;9(6):3344-3350.
    PMID: 29808897 DOI: 10.1039/c8fo00136g
    Vanilloid (4-hydroxy-3-methoxyphenyl benzenoid) containing foods are reported to possess many biological activities including anti-inflammatory properties. Homodimerisation of the Toll-like receptor-4 (TLR-4)/Myeloid differentiation factor 2 (MD-2) complex results in life-threatening complications in inflammatory disorders. In this study, we report activity of vanilloids in inhibition of TLR-4/MD-2 homodimersization and their molecular interactions with the receptor. The inhibitory activities of vanilloids were assessed in vitro by determining their antagonistic actions of lipopolysaccharide from Escherichia coli (LPSEc) in activation of TLR-4/MD-2 homodimerisation in TLR-4/MD-2/CD-14 transfected HEK-293 cells. The in vitro anti-inflammatory activity of vanilloids was also determined using RAW 264.7 cells. All the vanilloids were found to be active in the inhibition of TLR-4/MD-2 homodimersiation and nitric oxide production in RAW 264.7 cells. Rigid and flexible molecular docking studies were performed to gain insight into interactions between vanilloids and the binding site of the TLR-4/MD-2 complex.
  12. Mai CW, Yaeghoobi M, Abd-Rahman N, Kang YB, Pichika MR
    Eur J Med Chem, 2014 Apr 22;77:378-87.
    PMID: 24675137 DOI: 10.1016/j.ejmech.2014.03.002
    In the present study, a series of 46 chalcones were synthesised and evaluated for antiproliferative activities against the human TRAIL-resistant breast (MCF-7, MDA-MB-231), cervical (HeLa), ovarian (Caov-3), lung (A549), liver (HepG2), colorectal (HT-29), nasopharyngeal (CNE-1), erythromyeloblastoid (K-562) and T-lymphoblastoid (CEM-SS) cancer cells. The chalcone 38 containing an amino (-NH2) group on ring A was the most potent and selective against cancer cells. The effects of the chalcone 38 on regulation of 43 apoptosis-related markers in HT-29 cells were determined. The results showed that 20 apoptotic markers (Bad, Bax, Bcl-2, Bcl-w, Bid, Bim, CD40, Fas, HSP27, IGF-1, IGFBP-4, IGFBP-5, Livin, p21, Survivin, sTNF-R2, TRAIL-R2, XIAP, caspase-3 and caspase-8) were either up regulated or down regulated.
  13. Daood U, Gopinath D, Pichika MR, Mak KK, Seow LL
    Molecules, 2021 Apr 12;26(8).
    PMID: 33921378 DOI: 10.3390/molecules26082214
    To determine whether quaternary ammonium (k21) binds to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) spike protein via computational molecular docking simulations, the crystal structure of the SARS-CoV-2 spike receptor-binding domain complexed with ACE-2 (PDB ID: 6LZG) was downloaded from RCSB PD and prepared using Schrodinger 2019-4. The entry of SARS-CoV-2 inside humans is through lung tissues with a pH of 7.38-7.42. A two-dimensional structure of k-21 was drawn using the 2D-sketcher of Maestro 12.2 and trimmed of C18 alkyl chains from all four arms with the assumption that the core moiety k-21 was without C18. The immunogenic potential of k21/QA was conducted using the C-ImmSim server for a position-specific scoring matrix analyzing the human host immune system response. Therapeutic probability was shown using prediction models with negative and positive control drugs. Negative scores show that the binding of a quaternary ammonium compound with the spike protein's binding site is favorable. The drug molecule has a large Root Mean Square Deviation fluctuation due to the less complex geometry of the drug molecule, which is suggestive of a profound impact on the regular geometry of a viral protein. There is high concentration of Immunoglobulin M/Immunoglobulin G, which is concomitant of virus reduction. The proposed drug formulation based on quaternary ammonium to characterize affinity to the SARS-CoV-2 spike protein using simulation and computational immunological methods has shown promising findings.
  14. Kandasamy M, Mak KK, Devadoss T, Thanikachalam PV, Sakirolla R, Choudhury H, et al.
    BMC Chem, 2019 Dec;13(1):117.
    PMID: 31572984 DOI: 10.1186/s13065-019-0633-4
    Background: The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, Kelch-like ECH-associated protein 1 (KEAP1), are perilous in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation is involved in cytoprotection against many inflammatory disorders. N'-Nicotinoylquinoxaline-2-carbohdyrazide (NQC) was structurally designed by the combination of important pharmacophoric features of bioactive compounds reported in the literature.

    Methods: NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using 'Keap1:Nrf2 Inhibitor Screening Assay Kit'. To obtain the insights on NQC's activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes.

    Results: NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human.

    Conclusion: NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.

  15. Shiming Z, Mak KK, Balijepalli MK, Chakravarthi S, Pichika MR
    Biomed Pharmacother, 2021 Jul;139:111576.
    PMID: 33862494 DOI: 10.1016/j.biopha.2021.111576
    Diabetes mellitus or type-2 diabetes, commonly referred as diabetes, is a metabolic disorder that results in high blood sugar level. Despite the availability of several antidiabetic drugs in the market, they still do not adequately regulate blood sugar levels. Thus, in general people prefer to use herbal supplements/medicines along with antidiabetic drugs to control blood sugar levels. One of such herbal medicine is Swietenia macrophylla seeds. It is widely used in Asia for controlling blood sugar levels. One of the major bioactive compounds, Swietenine, is reported to be responsible for controlling blood glucose levels. However, there were no studies on its efficacy in controlling the blood glucose in diabetic rats. In this study, we evaluated the antihyperglycemic activity of Swietenine and its pharmacodynamic interaction with Metformin in Streptozotocin induced diabetes in rats. The activity of Swietenine was investigated at three different doses: 10, 20 and 40 mg/kg body weight (bw). Metformin (50 mg/kg bw) was used as a standard drug. Swietenine (20 and 40 mg/kg bw) and Metformin (50 mg/kg bw) showed significant effect in reducing the glucose, cholesterol, triglycerides, low-density lipoprotein, urea, creatinine, alanine transaminase, alkaline phosphatase, aspartate transaminase, alanine transaminase, and malondialdehyde level in serum while it had increased the high-density lipoprotein, glutathione, and total antioxidant capacity level. In addition, Swietenine (20 and 40 mg/kg) had shown significant synergistic effect with Metformin. Administration of Swietenine at 10 mg/kg bw neither showed activity nor influenced Metformin's activity. The results from this study confirmed the beneficial effects of Swietenine and its synergistic action with Metformin in controlling the dysregulated serum parameters in Streptozotocin induced diabetes in rats.
  16. Fu C, Deng S, Koneski I, Awad MM, Akram Z, Matinlinna J, et al.
    J Mech Behav Biomed Mater, 2020 12;112:104082.
    PMID: 32979607 DOI: 10.1016/j.jmbbm.2020.104082
    OBJECTIVE: To investigate the effect of blue light photoactivated riboflavin modified universal adhesives on dentin collagen biodegradation resistance, dentin apparent elastic modulus, and resin-dentin bond strength with interfacial morphology.

    METHODS: Dentin slabs were treated with 0.1% riboflavin-5-phosphate modified (powder added slowly while shaking and then sonicated to enhance the dispersion process) Universal Adhesive Scotch Bond and Zipbond™ along with control (non-modified) and experimental adhesives, photoactivated with blue light for 20s. Hydroxyproline (HYP) release was assessed after 1-week storage. Elastic-modulus testing was evaluated using universal testing machine at 24 h. Resin-dentin interfacial morphology was assessed with scanning electron-microscope, after 6-month storage. 0.1% rhodamine dye was added into each adhesive and analyzed using CLSM. Detection of free amino groups was carried out using ninhydrin and considered directly proportional to optical absorbance. Collagen molecular confirmation was determined using spectropolarimeter to evaluate and assess CD spectra. For molecular docking studies with riboflavin (PDB ID file), the binding pocket was selected with larger SiteScore and DScore using Schrodinger PB software. After curing, Raman shifts in Amide regions were obtained at 8 μm levels. Data were analyzed using Two-way analysis of variance (ANOVA, p ≤ 0.05) and Tukey-Kramer multiple comparison post hoc tests.

    RESULTS: At baseline, bond strength reduced significantly (p ≤ 0.05) in control specimens. However, at 6 months' storage, UVA Zipbond™ had significantly higher μTBS. Resin was able to diffuse through the porous demineralized dentin creating adequate hybrid layers in both 0.1%RF modified adhesives in CLSM images. In riboflavin groups, hybrid layer and resin tags were more pronounced. The circular dichroism spectrum showed negative peaks for riboflavin adhesive specimens. Best fitted poses adopted by riboflavin compound are docked with MMP-2 and -9 proteases. Amide bands and CH2 peaks followed the trend of being lowest for control UA Scotch bond adhesive specimens and increasing in Amides, proline, and CH2 intensities in 0.1%RF modified adhesive specimens. All 0.1%RF application groups showed statistically significant (p 

  17. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
  18. Kuche K, Maheshwari R, Tambe V, Mak KK, Jogi H, Raval N, et al.
    Nanoscale, 2018 May 17;10(19):8911-8937.
    PMID: 29722421 DOI: 10.1039/c8nr01383g
    The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.
  19. Meka VS, Sing MKG, Pichika MR, Nali SR, Kolapalli VRM, Kesharwani P
    Drug Discov Today, 2017 11;22(11):1697-1706.
    PMID: 28683256 DOI: 10.1016/j.drudis.2017.06.008
    Global research on polyelectrolytes at a fundamental and applied level is intensifying because the advantages of sustainability are being accepted in academia and industrial research settings. During recent decades, polyelectrolytes became one of the most attractive subjects of scientific research owing to their great potential in the areas of advanced technologies. Polyelectrolytes are a type of polymer that have multitudinous ionizable functional groups. Ionized polyelectrolytes in solution can form a complex with oppositely charged polyelectrolytes - a polyelectrolyte complex (PEC). The present article provides a comprehensive review on PECs and their classification, theory and characterization, as well as a critical analysis of the current research.
  20. Jogi H, Maheshwari R, Raval N, Kuche K, Tambe V, Mak KK, et al.
    Nanomedicine (Lond), 2018 May;13(10):1187-1220.
    PMID: 29905493 DOI: 10.2217/nnm-2017-0397
    Cancer is estimated to be a significant health problem of the 21st century. The situation gets even tougher when it comes to its treatment using chemotherapy employing synthetic anticancer molecules with numerous side effects. Recently, there has been a paradigm shift toward the adoption of herbal drugs for the treatment of cancer. In this context, a suitable delivery system is principally warranted to deliver these herbal biomolecules specifically at the tumorous site. To achieve this goal, carbon nanotubes (CNTs) have been widely explored to deliver anticancer herbal molecules with improved therapeutic efficacy and safety. This review uniquely expounds the biopharmaceutical, clinical and safety aspects of different anticancer herbal drugs delivered through CNTs with a cross-talk on their outcomes. This review will serve as a one-stop-shop for the readers on various anticancer herbal drugs delivered through CNTs as a futuristic delivery device.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links