Displaying all 11 publications

Abstract:
Sort:
  1. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Chemosphere, 2017 Jan;166:21-30.
    PMID: 27681257 DOI: 10.1016/j.chemosphere.2016.09.054
    A new graphene-based tetraethoxysilane-methyltrimethoxysilane sol-gel hybrid magnetic nanocomposite (Fe3O4@G-TEOS-MTMOS) was synthesised, characterized and successfully applied in magnetic solid-phase extraction (MSPE) for simultaneous analysis of polar and non-polar organophosphorus pesticides from several water samples. The Fe3O4@G-TEOS-MTMOS nanocomposite was characterized using Fourier transform-infrared spectroscopy, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and X-ray diffraction. Separation, determination and quantification were achieved using gas chromatography coupled with micro electron capture detector. Adsorption capacity of the sorbent was calculated using Langmuir equation. MSPE was linear in the range 100-1000 pg mL(-1) for phosphamidon and dimethoate, and 10-100 pg mL(-1) for chlorpyrifos and diazinon, with limit of detection (S/N = 3) of 19.8, 23.7, 1.4 and 2.9 pg mL(-1) for phosphamidon, dimethoate, diazinon and chlorpyrifos, respectively. The LODs obtained is well below the maximum residual level (100 pg mL(-1)) as set by European Union for pesticides in drinking water. Acceptable precision (%RSD) was achieved for intra-day (1.3-8.7%, n = 3) and inter-day (7.6-17.8%, n = 15) analyses. Fe3O4@G-TEOS-MTMOS showed high adsorption capacity (54.4-76.3 mg g(-1)) for the selected OPPs. No pesticide residues were detected in the water samples analysed. Excellent extraction recoveries (83-105%) were obtained for the spiked OPPs from tap, river, lake and sea water samples. The newly synthesised Fe3O4@G-TEOS-MTMOS showed high potential as adsorbent for OPPs analysis.
  2. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Food Chem, 2018 Jan 15;239:208-216.
    PMID: 28873561 DOI: 10.1016/j.foodchem.2017.06.094
    Graphene (G) modified with magnetite (Fe3O4) and sol-gel hybrid tetraethoxysilane-methyltrimethoxysilane (TEOS-MTMOS) was used as a clean-up adsorbent in magnetic solid phase extraction (MSPE) for direct determination of acrylamide in various food samples prior to gas chromatography-mass spectrometry analysis. Good linearity (R2=0.9990) was achieved for all samples using matrix-matched calibration. The limit of detection (LOD=3×SD/m) obtained was 0.061-2.89µgkg-1 for the studied food samples. Native acrylamide was found to be highest in fried potato with bright-fleshed (900.81µgkg-1) and lowest in toasted bread (5.02µgkg-1). High acrylamide relative recovery (RR=82.7-105.2%) of acrylamide was obtained for spiked (5 and 50µgkg-1) food samples. The Fe3O4@G-TEOS-MTMOS is reusable up to 7 times as a clean-up adsorbent with good recovery (>85%). The presence of native acrylamide was confirmed by mass analysis at m/z=71 ([C3H5NO]+) and m/z=55 ([C3H3O]+).
  3. Rashidi Nodeh H, Wan Ibrahim WA, Ali I, Sanagi MM
    Environ Sci Pollut Res Int, 2016 May;23(10):9759-73.
    PMID: 26850098 DOI: 10.1007/s11356-016-6137-z
    New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V).
  4. Soutoudehnia Korrani Z, Wan Ibrahim WA, Rashidi Nodeh H, Aboul-Enein HY, Sanagi MM
    J Sep Sci, 2016 Mar;39(6):1144-51.
    PMID: 26768840 DOI: 10.1002/jssc.201500896
    A new mesoporous silica based on the sol-gel material cyanopropyltriethoxysilane (CNPrTEOS) was successfully synthesized by the hydrolysis and condensation of CNPrTEOS in the presence of ammonium solution as catalyst and methanol as solvent. It was used as a solid-phase extraction sorbent for the simultaneous extraction of three organophosphorus pesticides, namely, polar dicrotophos and non-polar diazinon and chlorpyrifos. Analysis was performed using high-performance liquid chromatography with UV detection. CNPrTEOS was characterized by FTIR spectroscopy, field-emission scanning electron microscopy and nitrogen gas adsorption. The surface area and average pore diameter of the optimum sol-gel CNPrTEOS are 379 m(2) /g and 4.7 nm (mesoporous), respectively. The proposed solid-phase extraction based on CNPrTEOS exhibited good linearity in the range of 0.8-100 μg/L, satisfactory precision (1.15-3.82%), high enrichment factor (800) and low limit of detection (0.072-0.091 μg/L). The limits of detection obtained using the proposed solid-phase extraction method are well below the maximum residue limit set by European Union and are also lower (13.6-48.5×) than that obtained by using a commercial CN-SPE cartridge (0.98-4.41 μg/L). The new mesoporous sol-gel CNPrTEOS showed promising alternative as SPE sorbent material for the simultaneous extraction of polar and non-polar organophosphorus pesticides.
  5. Musa M, Wan Ibrahim WA, Mohd Marsin F, Abdul Keyon AS, Rashidi Nodeh H
    Food Chem, 2018 Nov 01;265:165-172.
    PMID: 29884368 DOI: 10.1016/j.foodchem.2018.04.020
    Graphene-magnetite composite (G-Fe3O4) was successfully synthesized and applied as adsorbent for magnetic solid phase extraction (MSPE) of two phenolic acids namely 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) from stingless bee honey prior to analysis using high performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/Vis). Several MSPE parameters affecting extraction of these two acids were optimized. Optimum MSPE conditions were 50 mg of G-Fe3O4 adsorbent, 5 min extraction time at 1600 rpm, 30 mL sample volume, sample solution pH 0.5, 200 µL methanol as desorption solvent (5 min sonication assisted) and 5% w/v NaCl. The LODs (3 S/N) calculated for 4-HB and 3,4-DHB were 0.08 and 0.14 µg/g, respectively. Good relative recoveries (72.6-110.6%) and reproducibility values (RSD 
  6. Nasiri R, Dabagh S, Meamar R, Idris A, Muhammad I, Irfan M, et al.
    Nanotechnology, 2020 May 08;31(19):195603.
    PMID: 31978907 DOI: 10.1088/1361-6528/ab6fd4
    The present study aims at engineering, fabrication, characterization, and qualifications of papain (PPN) conjugated SiO2-coated iron oxide nanoparticles 'IONPs@SiO2-PPN'. Initially fabricated iron oxide nanoparticles (IONPs) were coated with silica (SiO2) using sol-gel method to hinder the aggregation and to enhance biocompatibility. Next, PPN was loaded as an anticancer agent into the silica coated IONPs (IONPs@SiO2) for the delivery of papain to the HeLa cancer cells. This fabricated silica-coated based magnetic nanoparticle is introduced as a new physiologically-compatible and stable drug delivery vehicle for delivering of PPN to the HeLa cancer cell line. The IONPs@SiO2-PPN were characterized using FT-IR, AAS, FESEM, XRD, DLS, and VSM equipment. Silica was amended on the surface of iron oxide nanoparticles (IONPs, γ-Fe2O3) to modify its biocompatibility and stability. The solvent evaporation method was used to activate PPN vectorization. The following tests were performed to highlight the compatibility of our proposed delivery vehicle: in vitro toxicity assay, in vivo acute systemic toxicity test, and the histology examination. The results demonstrated that IONPs@SiO2-PPN successfully reduced the IC50 values compared with the native PPN. Also, the structural alternations of HeLa cells exposed to IONPs@SiO2-PPN exhibited higher typical hallmarks of apoptosis compared to the cells treated with the native PPN. The in vivo acute toxicity test indicated no clinical signs of distress/discomfort or weight loss in Balb/C mice a week after the intravenous injection of IONPs@SiO2 (10 mg kg-1). Besides, the tissues architectures were not affected and the pathological inflammatory alternations detection failed. In conclusion, IONPs@SiO2-PPN can be chosen as a potent candidate for further medical applications in the future, for instance as a drug delivery vehicle or hyperthermia agent.
  7. Kamboh MA, Wan Ibrahim WA, Rashidi Nodeh H, Zardari LA, Sanagi MM
    Environ Technol, 2019 Aug;40(19):2482-2493.
    PMID: 29464995 DOI: 10.1080/09593330.2018.1444100
    Magnetic nanocomposites adorned with calixarene were successfully prepared by immobilizing diethanolamine functionalized p-tert-butylcalix[4]arene (DEA-Calix) onto silica-coated magnetic nanoparticles (MNPs). The synthesis, surface morphology, purity, elemental composition and thermal stability of newly prepared nanocomposites were analyzed using FT-IR spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), X-ray diffractometer (XRD), thermal gravimetric analysis (TGA) and vibrating sample magnetometer (VSM). Magnetic solid-phase adsorption (MSPA) was employed to explore the adsorption behavior of DEA-Calix-MNPs towards Pb(II) from water samples prior to its flame atomic absorption spectrometric analysis. The essential analytical factors governing the adsorption efficiency such as solution pH, mass of adsorbent, concentration and contact time have been investigated and optimized. The results depict that DEA-Calix-MNPs has excellent adsorption efficiency 97% (at pH 5.5) with high adsorption capacity of 51.81 mg g-1 for Pb(II) adsorption. Additionally, kinetic and equilibrium studies suggested that Pb(II) adsorption process follows a pseudo-second-order model and Langmuir isotherms, respectively. Real sample analysis also confirmed field applicability of the new DEA-Calix-MNPs adsorbent.
  8. Najarzadekan H, Kamboh MA, Sereshti H, Ahmad I, Sridewi N, Shahabuddin S, et al.
    Polymers (Basel), 2022 Sep 08;14(18).
    PMID: 36145908 DOI: 10.3390/polym14183760
    Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane−polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. The nanosorbent was comprehensively characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The SEM analysis depicted the nanofiber’s unique morphology and size distribution in the range of 50−200 nm. To determine the levels of 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,3,4-tetrachlorobenzene in water samples, freshly prepared nanosorbent was employed using headspace-solid phase microextraction (HS-SPME) in combination with gas chromatography micro electron capture detector (GC-µECD). Other calixarenes, such as sulfonated calix[4]arene, p-tert-calixarene, and calix[6]arene were also examined, and among the fabricated sorbents, the PU−PSU/calix[4]arene showed the highest efficiency. The key variables of the procedure, including ionic strength, extraction temperature, extraction duration, and desorption conditions were examined. Under optimal conditions, the LOD (0.1−1.0 pg mL−1), the LDR (0.4−1000 pg mL−1), and the R2 > 0.990 were determined. Additionally, the repeatability from fiber to fiber and the intra-day and inter-day reproducibility were determined to be 1.4−6.0, 4.7−10.1, and 0.9−9.7%, respectively. The nanofiber adsorption capacity was found to be 670−720 pg/g for CBs at an initial concentration of 400 pg mL−1. A satisfactory recovery of 80−106% was attained when the suggested method’s application for detecting chlorobenzenes (CBs) in tap water, river water, sewage water, and industrial water was assessed.
  9. Najarzadekan H, Sereshti H, Ahmad I, Shahabuddin S, Rashidi Nodeh H, Sridewi N
    Polymers (Basel), 2022 Sep 05;14(17).
    PMID: 36080757 DOI: 10.3390/polym14173682
    A new solid phase micro extraction (SPME) fiber coating composed of electrospun polyethylene terephthalate (PET) nanofibrous mat doped with superhydrophobic nanosilica (SiO2) was coated on a stainless-steel wire without the need of a binder. The coating was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR) techniques and it was used in headspace-SPME of 16 organochlorine pesticides in water samples prior to gass chromatography micro electron capture detector (GC-µECD) analysis. The effects of main factors such as adsorption composition, electrospinning flow rate, salt concentration, extraction temperature, extraction time, and desorption conditions were investigated. Under the optimum conditions, the linear dynamic range (8−1000 ng L−1, R2 > 0.9907), limits of detection (3−80 ng L−1), limits of quantification (8−200 ng L−1), intra-day and inter-day precisions (at 400 and 1000 ng L−1, 1.7−13.8%), and fiber-to-fiber reproducibility (2.4−13.4%) were evaluated. The analysis of spiked tap, sewage, industrial, and mineral water samples for the determination of the analytes resulted in satisfactory relative recoveries (78−120%).
  10. Al'Abri AM, Abdul Halim SN, Abu Bakar NK, Saharin SM, Sherino B, Rashidi Nodeh H, et al.
    J Environ Sci Health B, 2019;54(12):930-941.
    PMID: 31407615 DOI: 10.1080/03601234.2019.1652072
    This article demonstrates the first application of a copper-based porous coordination polymer (BTCA-P-Cu-CP) as a carbon paste electrode (CPE) modifier for the detection of malathion. The electrochemical behavior of BTCA-P-Cu-CP/CPE was explored using cyclic voltammetry (CV) while chrono-amperometry methods were applied for the analytical evaluation of the sensor performance. Under optimized conditions, the developed sensor exhibited high reproducibility, stability, and wide dynamic range (0.6-24 nM) with the limits of detection and sensitivity equal to 0.17 nM and 5.7 µAnMcm-1, respectively, based on inhibition signal measurement. Furthermore, the presence of common coexisting interfering species showed a minor change in signals (<4.4%). The developed sensor has been applied in the determination of malathion in spiked vegetable extracts. It exhibited promising results in term of fast and sensitive determination of malathion in real samples at trace level with recoveries of 91.0 to 104.4%. (RSDs < 5%, n = 3). A comparison of the two studied techniques showed that the HPLC technique is unable to detect malathion when the concentration is lower than 1.8 µM while 0.006 µM is detected with appropriate RSDs 0.2-5.2% (n = 3) by amperometric method. Due to the high sensitivity and selectivity, this new electrochemical sensor will be useful for monitoring trace malathion in real samples.
  11. Koupaei Malek S, Gabris MA, Hadi Jume B, Baradaran R, Aziz M, Karim KJBA, et al.
    Daru, 2019 Jun;27(1):9-20.
    PMID: 30554368 DOI: 10.1007/s40199-018-0232-2
    Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property. Graphical Abstract ᅟ.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links