Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Islam MT, Samsuzzaman M
    ScientificWorldJournal, 2014;2014:673846.
    PMID: 24987742 DOI: 10.1155/2014/673846
    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.
  2. Samsuzzaman M, Islam MT
    ScientificWorldJournal, 2014;2014:604375.
    PMID: 24895656 DOI: 10.1155/2014/604375
    A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the -10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69-9.14 GHz), at middle band is 9.13% (10.47-11.48 GHz), and at upper band is 3.79% (11.53-11.98 GHz). Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ × 0.60λ × 0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications.
  3. Samsuzzaman M, Islam MT
    Sensors (Basel), 2018 Dec 04;18(12).
    PMID: 30518080 DOI: 10.3390/s18124261
    A simple, compact sickle-shaped printed antenna with a slotted ground plane is designed and developed for broadband circularly polarized (CP) radiation. The sickle-shaped radiator with a tapered feed line and circular slotted square ground plane are utilized to realize the wideband CP radiation feature. With optimized dimensions of 0.29λ × 0.29λ × 0.012λ at 2.22 GHz frequency for the realized antenna parameters, the measured results display that the antenna has a 10 dB impedance bandwidth of 7.70 GHz (126.85%; 2.22⁻9.92 GHz) and a 3 dB axial ratio (AR) bandwidth of 2.64 GHz (73.33%; 2.28⁻4.92 GHz). The measurement agrees well with simulation, which proves an excellent circularly polarized property. For verification, the mechanism of band improvement and circular polarization are presented, and the parametric study is carried out. Since, the proposed antenna is a simple design structure with broad impedance and AR bandwidth, which is a desirable feature as a candidate for various wireless communication systems. Because of the easy printed structure and scaling the dimension with broadband CP characteristics, the realized antenna does incorporate in a number of CP wireless communication applications.
  4. Samsuzzaman M, Islam MT, Mandeep JS, Misran N
    ScientificWorldJournal, 2014;2014:804068.
    PMID: 24696661 DOI: 10.1155/2014/804068
    This paper presents a printed wide-slot antenna design and prototyping on available low-cost polymer resin composite material fed by a microstrip line with a rotated square slot for bandwidth enhancement and defected ground structure for gain enhancement. An I-shaped microstrip line is used to excite the square slot. The rotated square slot is embedded in the middle of the ground plane, and its diagonal points are implanted in the middle of the strip line and ground plane. To increase the gain, four L-shaped slots are etched in the ground plane. The measured results show that the proposed structure retains a wide impedance bandwidth of 88.07%, which is 20% better than the reference antenna. The average gain is also increased, which is about 4.17 dBi with a stable radiation pattern in the entire operating band. Moreover, radiation efficiency, input impedance, current distribution, axial ratio, and parametric studies of S11 for different design parameters are also investigated using the finite element method-based simulation software HFSS.
  5. Islam MT, Samsuzzaman M, Islam MT, Kibria S
    Sensors (Basel), 2018 Dec 14;18(12).
    PMID: 30558191 DOI: 10.3390/s18124427
    An experimental system for early screening of a breast tumor is presented in this article. The proposed microwave imaging (MI) system consists of a moveable array of nine improved negative-index metamaterial (MTM)-loaded ultrawideband (UWB) antenna sensor with incorporation of a corresponding SRR (split-ring resonator) and CLS (capacitively loaded strip) structure, in a circular array, the stepper motor-based array-mounting stand, the adjustable phantom hanging platform, an RF switching system to control the receivers, and a personal computer-based signal processing and image reconstruction unit using MATLAB. The improved antenna comprises of four-unit cells along one axis, where an individual unit cell integrates a balancing SRR and CLS pair, which makes the antenna radiation omnidirectional over the operating frequencies. The electrical dimensions of this proposed antenna are 0.28λ × 0.20λ × 0.016λ, measured at the lowest operating frequency of 2.97 GHz as the operating bandwidth of this is in between 2.97⁻15 GHz (134.82% bandwidth), with stable directional radiation pattern. SP8T 8 port switch is used to enable the eight receiver antennas to sequentially send a 3⁻8.0 GHz microwave signal to capture the backscattered signal by MATLAB software. A low-cost realistic homogeneous breast phantom with tumor material is developed and measured to test the capability of the imaging system to detect the breast tumors. A post-processing delay-multiply-and-sum (DMAS) algorithm is used to process the recorded backscatter signal to get an image of the breast phantom, and to accurately identify the existence and located area of multiple breast tumor tissues.
  6. Samsuzzaman M, Islam MT, Arshad H, Mandeep JS, Misran N
    ScientificWorldJournal, 2014;2014:345190.
    PMID: 24982943 DOI: 10.1155/2014/345190
    Circularly polarized (CP) dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE) composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz) for lower band and 40 MHz (3.29 GHz to 3.33 GHz) for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.
  7. Islam MT, Mahmud MZ, Islam MT, Kibria S, Samsuzzaman M
    Sci Rep, 2019 10 29;9(1):15491.
    PMID: 31664056 DOI: 10.1038/s41598-019-51620-z
    Globally, breast cancer is a major reason for female mortality. Due to the limitations of current clinical imaging, the researchers are encouraged to explore alternative and complementary tools to available techniques to detect the breast tumor in an earlier stage. This article outlines a new, portable, and low-cost microwave imaging (MWI) system using an iterative enhancing technique for breast imaging. A compact side slotted tapered slot antenna is designed for microwave imaging. The radiating fins of tapered slot antenna are modified by etching nine rectangular side slots. The irregular slots on the radiating fins enhance the electrical length as well as produce strong directive radiation due to the suppression of induced surface currents that radiate vertically at the outer edges of the radiating arms with end-fire direction. It has remarkable effects on efficiency and gain. With the addition of slots, the side-lobe levels are reduced, the gain of the main-lobe is increased and corrects the squint effects simultaneously, thus improving the characteristics of the radiation. For experimental validation, a heterogeneous breast phantom was developed that contains dielectric properties identical to real breast tissues with the inclusion of tumors. An alternative PC controlled and microcontroller-based mechanical MWI system is designed and developed to collect the antenna scattering signal. The radiated backscattered signals from the targeted area of the human body are analyzed to reveal the changes in dielectric properties in tissues. The dielectric constants of tumorous cells are higher than that of normal tissues due to their higher water content. The remarkable deviation of the scattered field is processed by using newly proposed Iteratively Corrected Delay and Sum (IC-DAS) algorithm and the reconstruction of the image of the phantom interior is done. The developed UWB (Ultra-Wideband) antenna based MWI has been able to perform the detection of tumorous cells in breast phantom that can pave the way to saving lives.
  8. Islam MT, Islam MT, Samsuzzaman M, Kibria S, Chowdhury MEH
    Diagnostics (Basel), 2021 Mar 08;11(3).
    PMID: 33800188 DOI: 10.3390/diagnostics11030470
    Microwave imaging (MI) is a consistent health monitoring technique that can play a vital role in diagnosing anomalies in the breast. The reliability of biomedical imaging diagnosis is substantially dependent on the imaging algorithm. Widely used delay and sum (DAS)-based diagnosis algorithms suffer from some significant drawbacks. The delay multiply and sum (DMAS) is an improved method and has benefits over DAS in terms of greater contrast and better resolution. However, the main drawback of DMAS is its excessive computational complexity. This paper presents a compressed sensing (CS) approach of iteratively corrected DMAS (CS-ICDMAS) beamforming that reduces the channel calculation and computation time while maintaining image quality. The array setup for acquiring data comprised 16 Vivaldi antennas with a bandwidth of 2.70-11.20 GHz. The power of all the channels was calculated and low power channels were eliminated based on the compression factor. The algorithm involves data-independent techniques that eliminate multiple reflections. This can generate results similar to the uncompressed variants in a significantly lower time which is essential for real-time applications. This paper also investigates the experimental data that prove the enhanced performance of the algorithm.
  9. Alam T, Almutairi AF, Samsuzzaman M, Cho M, Islam MT
    Sci Rep, 2021 Jul 08;11(1):14087.
    PMID: 34238984 DOI: 10.1038/s41598-021-93537-6
    This research article presents a design and performance analysis of a metamaterial inspired ultra-high frequency (UHF) compact planar patch antenna for the CubeSat communication system that could be smoothly integrated with commercially available 2U Cube Satellite structure and onboard subsystem. The proposed antenna consists of two layers, one is two different width meander line antenna patch with partial ground plane and another layer is 3 × 2 near-zero-indexed metamaterial (NZIM) metamaterial array structure with ground plane. The NZIM array layer has been utilized to minimize the coupling effect with Cube Satellite structure and improve the frequency stability with enhanced antenna gain and efficiency. The fabricated antenna can operate within the lower UHF frequency band of 443.5-455 MHz. with an average peak gain of 2.5 dB. The designed antenna impedance stability characteristic has been explored after integration with the 2U Cube Satellite body layout. Besides, the antenna communication performance has been verified using 2U Cube Satellite free space path loss investigation. Small antenna volume with trade-off between the antenna size and performance are the key advantages of the proposed design, as the antenna occupies only 80 × 40 × 3.35 mm3 space of the 2U Cube Satellite body structure and the geometrical parameters can be designed to provide the best performance between 449 and 468.5 MHz.
  10. Islam MT, Samsuzzaman M, Islam MT, Kibria S, Singh MJ
    Sensors (Basel), 2018 Sep 05;18(9).
    PMID: 30189684 DOI: 10.3390/s18092962
    Microwave breast imaging has been reported as having the most potential to become an alternative or additional tool to the existing X-ray mammography technique for detecting breast tumors. Microwave antenna sensor performance plays a significant role in microwave imaging system applications because the image quality is mostly affected by the microwave antenna sensor array properties like the number of antenna sensors in the array and the size of the antenna sensors. In this paper, a new system for successful early detection of a breast tumor using a balanced slotted antipodal Vivaldi Antenna (BSAVA) sensor is presented. The designed antenna sensor has an overall dimension of 0.401λ × 0.401λ × 0.016λ at the first resonant frequency and operates between 3.01 to 11 GHz under 10 dB. The radiating fins are modified by etching three slots on both fins which increases the operating bandwidth, directionality of radiation pattern, gain and efficiency. The antenna sensor performance of both the frequency domain and time domain scenarios and high-fidelity factor with NFD is also investigated. The antenna sensor can send and receive short electromagnetic pulses in the near field with low loss, little distortion and highly directionality. A realistic homogenous breast phantom is fabricated, and a breast phantom measurement system is developed where a two antennas sensor is placed on the breast model rotated by a mechanical scanner. The tumor response was investigated by analyzing the backscattering signals and successful image construction proves that the proposed microwave antenna sensor can be a suitable candidate for a high-resolution microwave breast imaging system.
  11. Rahman A, Islam MT, Samsuzzaman M, Singh MJ, Akhtaruzzaman M
    Materials (Basel), 2016 May 11;9(5).
    PMID: 28773479 DOI: 10.3390/ma9050358
    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.
  12. Islam MR, Islam MT, Moniruzzaman M, Samsuzzaman M, Arshad H
    Sci Rep, 2021 Apr 22;11(1):8784.
    PMID: 33888759 DOI: 10.1038/s41598-021-87958-6
    This paper represents a penta band square enclosed star-shaped modified split ring resonator (SRR) based single negative meta-atom absorber (MAA) for multi-band microwave regime applications. FR-4 low-cost material has been used as a substrate to make the MAA unit cell with 0.101λ0 × 0.101λ0 of electrical size, where λ0 is the wavelength calculated at the lower resonance frequency of 3.80 GHz. There are two outer square split ring and one inner star ring shape resonator of 0.035 mm thickness of copper placed on the one side, and another side of the substrate has full copper to construct the desired unit cell. The MAA unit cell provides five absorption peaks of 97.87%, 93.65%, 92.66%, 99.95%, and 99.86% at the frequencies of 3.80, 5.65, 8.45, 10.82, and 15.92 GHz, respectively, which covers S-, C-, X-, and Ku- bands. The properties of MAA have been investigated and analyzed in the E-, H-fields and surface current. The EMR and highest Q factor of the designed MAA is 9.87 and 30.41, respectively, and it shows a single negative (SNG) property. Different types of parametric analysis have been done to show the better performance of absorption. Advanced Designed System (ADS) software has been used for equivalent circuit to verify the simulated S11 result obtained from the CST-2019 software. Experimental outcomes of the MAA unit cell have a good deal with the simulated result and measured result of the 24 × 20 array of unit cells also shown. Since the unit cell provides superior EMR, excellent Q-factor, and highest absorption so the recommended MAA can be effectively used as a penta band absorber in microwave applications, like notch filtering, sensing, reducing the unintended noise generated with the copper component of the satellite and radar antennas.
  13. Islam MT, Samsuzzaman M, Kibria S, Misran N, Islam MT
    Sci Rep, 2019 Nov 21;9(1):17317.
    PMID: 31754189 DOI: 10.1038/s41598-019-53857-0
    In this paper, the design consideration is investigated for a cylindrical system with low-cost and low-loss dielectric materials for the detection of breast tumor using iteratively corrected delay multiply and sum (IC- DMAS) algorithm. Anomaly in breast tissue is one of the most crucial health issues for women all over the world today. Emergency medical imaging diagnosis can be harmlessly managed by microwave-based analysis technology. Microwave Imaging (MI) has been proved to be a reliable health monitoring approach that can play a fundamental role in diagnosing anomaly in breast tissue. An array of 16 high gain microstrip antennas loaded by Index Near-Zero (INZ) metasurfaces (MS), having the impedance bandwidth of 8.5 GHz (2.70-11.20 GHz) are used as transceivers for the system. The MS is used to increase the electrical length of the signal that results in the gain enhancements. The antennas are mounted in a cylindrical arrangement on a mechanical rotating table along with a phantom mounting podium. A non-reflective positive control switching matrix is used for transmitting and receiving microwave signals. A set of lab-made realistic heterogeneous breast phantoms containing skin, fat, glandular, and tumor tissue dielectric properties in individual layers are used to verify the performance of the proposed technique. The control of the mechanical unit, data collection, and post-processing is conducted via MATLAB. The system can detect multiple tumor objects. The imaging results and numerical Signal to Mean Ratio (SMR) values of the experiment validate the system efficiency and performance that can be a viable solution for tumor detections.
  14. Islam MT, Islam MM, Samsuzzaman M, Faruque MR, Misran N
    Sensors (Basel), 2015 May 20;15(5):11601-27.
    PMID: 26007721 DOI: 10.3390/s150511601
    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.
  15. Hossain A, Islam MT, Islam MT, Chowdhury MEH, Rmili H, Samsuzzaman M
    Materials (Basel), 2020 Nov 02;13(21).
    PMID: 33147702 DOI: 10.3390/ma13214918
    In this paper, a compact planar ultrawideband (UWB) antenna and an antenna array setup for microwave breast imaging are presented. The proposed antenna is constructed with a slotted semicircular-shaped patch and partial trapezoidal ground. It is compact in dimension: 0.30λ × 0.31λ × 0.011λ, where λ is the wavelength of the lowest operating frequency. For design purposes, several parameters are assumed and optimized to achieve better performance. The prototype is applied in the breast imaging scheme over the UWB frequency range 3.10-10.60 GHz. However, the antenna achieves an operating bandwidth of 8.70 GHz (2.30-11.00 GHz) for the reflection coefficient under-10 dB with decent impedance matching, 5.80 dBi of maximum gain with steady radiation pattern. The antenna provides a fidelity factor (FF) of 82% and 81% for face-to-face and side-by-side setups, respectively, which specifies the directionality and minor variation of the received pulses. The antenna is fabricated and measured to evaluate the antenna characteristics. A 16-antenna array-based configuration is considered to measure the backscattering signal of the breast phantom where one antenna acts as transmitter, and 15 of them receive the scattered signals. The data is taken in both the configuration of the phantom with and without the tumor inside. Later, the Iteratively Corrected Delay and Sum (IC-DAS) image reconstructed algorithm was used to identify the tumor in the breast phantom. Finally, the reconstructed images from the analysis and processing of the backscattering signal by the algorithm are illustrated to verify the imaging performance.
  16. Islam MT, Moniruzzaman M, Alam T, Samsuzzaman M, Razouqi QA, Almutairi AF
    Sci Rep, 2021 Aug 19;11(1):16898.
    PMID: 34413377 DOI: 10.1038/s41598-021-96228-4
    In this paper, a meander-lines-based epsilon negative (ENG) metamaterial (MTM) with a high effective medium ratio (EMR) and near-zero refractive index (NZI) is designed and investigated for multiband microwave applications. The metamaterial unit cell is a modification of the conventional square split-ring resonator in which the meander line concept is utilized. The meander line helps to increase the electrical length of the rings and provides strong multiple resonances within a small dimension. The unit cell of proposed MTM is initiated on a low-cost FR4 substrate of 1.5 mm thick and electrical dimension of 0.06λ × 0.06λ, where wavelength, λ is calculated at the lowest resonance frequency (2.48 GHz). The MTM provides four major resonances of transmission coefficient (S21) at 2.48, 4.28, 9.36, and 13.7 GHz covering S, C, X, and Ku bands. It shows negative permittivity, near-zero permeability, and near-zero refractive index in the vicinity of these resonances. The equivalent circuit is designed and modeled in Advanced Design System (ADS) software. The simulated S21 of the MTM unit cell is compared with the measured one and both show close similarity. The array performance of the MTM is also evaluated by using 2 × 2, 4 × 4, and 8 × 8 arrays that show close resemblance with the unit cell. The MTM offers a high effective medium ratio (EMR) of 15.1, indicating the design's compactness. The frequency hopping characteristics of the proposed MTM is investigated by open and short-circuited the three outer rings split gaps by using three switches. Eight different combinations of the switching states provide eight different sets of multiband resonances within 2-18 GHz; those give the flexibility of using the proposed MTM operating in various frequency bands. For its small dimension, NZI, high EMR, and frequency hopping characteristics through switching, this metamaterial can be utilized for multiband microwave applications, especially to enhance the gain of multiband antennas.
  17. Hoque A, Islam MT, Almutairi AF, Chowdhury MEH, Samsuzzaman M
    Sci Rep, 2020 Aug 04;10(1):13086.
    PMID: 32753600 DOI: 10.1038/s41598-020-69792-4
    This paper reports on a tunable transmission frequency characteristics-based metamaterial absorber of an X band sensing application with a fractional bandwidth. Tunable resonator metamaterial absorbers fabricated with dielectric surface have been the subject of growing attention of late. Absorbers possess electromagnetic properties and range modification capacity, and they have yet to be studied in detail. The proposed microstructure resonator inspired absorber with triple fractional band absorption consists of two balanced symmetrical vertical patches at the outer periphery and a tiny drop hole at two edges. Experimental verification depicted two absorption bands with single negative (SNG) characteristics for two resonances, but double negative (DNG) for single resonance frequency. The mechanism of sensing and absorption was analyzed using the transmission line principle with useful parameter analysis. Cotton, a hygroscopic fiber with moisture content, was chosen to characterize the proposed absorber for the X band application. The electrical properties of the cotton changed depending on the moisture absorption level. The simulation and the measured absorption approximately justified the result; the simulated absorption was above 90% (at 10.62, 11.64, and 12.8 GHz), although the steady level was 80%. The moisture content of the cotton (at different levels from 0 to 32.13%) was simulated, and the transmission resonance frequency changed its point in two significant ranges. However, comparing the two adopted measurement method and algorithm applied to the S parameter showed a closer variation between the two resonances (11.64 and 12.8 GHz) which signified that a much more accurate measurement of the cotton dielectric constant was possible up to a moisture content of 16.1%. However, certain unwanted changes were noted at 8.4-8.9 GHz and 10.6-12.4 GHz. The proposed triple-band absorber has potential applications in the X band sensing of moisture in capsules or tablet bottles.
  18. Islam MT, Rahman MN, Samsuzzaman M, Mansor MF, Misran N
    Sensors (Basel), 2018 Dec 01;18(12).
    PMID: 30513712 DOI: 10.3390/s18124213
    A digit 8-shaped resonator inspired metamaterial is proposed herein for sensor applications. The resonator is surrounded by a ground frame and excited by a microstrip feedline. The measurement of the sensor can be performed using common laboratory facilities in lieu of using the waveguide, as the resonator, ground frame, and feedline are all on the same microstrip. To achieve metamaterial properties, more than one unit cell is usually utilized, whereas, in this work, a single cell was used to achieve the metamaterial characteristics. The properties of the metamaterial were investigated to find the relationship between the simulation and measurements. The proposed metamaterial sensor shows considerable sensitivity in sensor application. For the sensor application, FR4 and Rogers RO4350 materials were used as the over-layer. The sensor can measure dielectric thickness with a sensitivity of 625 MHz/mm, 468 MHz/mm, and 354 MHz/mm for the single over-layer, double over-layers, and multiple over-layers, respectively. The proposed prototype can be utilized in several applications where metamaterial characteristics are required.
  19. Hossain A, Islam MT, Almutairi AF, Singh MSJ, Mat K, Samsuzzaman M
    Sensors (Basel), 2020 Mar 01;20(5).
    PMID: 32121477 DOI: 10.3390/s20051354
    An Ultrawideband (UWB) octagonal ring-shaped parasitic resonator-based patch antenna for microwave imaging applications is presented in this study, which is constructed with a diamond-shaped radiating patch, three octagonal, rectangular slotted ring-shaped parasitic resonator elements, and partial slotting ground plane. The main goals of uses of parasitic ring-shaped elements are improving antenna performance. In the prototype, various kinds of slots on the ground plane were investigated, and especially rectangular slots and irregular zigzag slots are applied to enhance bandwidth, gain, efficiency, and radiation directivity. The optimized size of the antenna is 29 × 24 × 1.5 mm3 by using the FR-4 substrate. The overall results illustrate that the antenna has a bandwidth of 8.7 GHz (2.80 ̶ 11.50 GHz) for the reflection coefficient S11 < -10 dB with directional radiation pattern. The maximum gain of the proposed prototype is more than 5.7 dBi, and the average efficiency over the radiating bandwidth is 75%. Different design modifications are performed to attain the most favorable outcome of the proposed antenna. However, the prototype of the proposed antenna is designed and simulated in the 3D simulator CST Microwave Studio 2018 and then effectively fabricated and measured. The investigation throughout the study of the numerical as well as experimental data explicit that the proposed antenna is appropriate for the Ultrawideband-based microwave-imaging fields.
  20. Islam MM, Islam MT, Samsuzzaman M, Faruque MRI, Misran N, Mansor MF
    Materials (Basel), 2015 Jan 23;8(2):392-407.
    PMID: 28787945 DOI: 10.3390/ma8020392
    A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm³, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4-12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links