Displaying all 7 publications

Abstract:
Sort:
  1. Wirtz RA, Rosenberg R, Sattabongkot J, Webster HK
    Lancet, 1990 Sep 8;336(8715):593-5.
    PMID: 1975379
    The distribution in Thailand of antibody to a recently discovered variant of circumsporozoite proteins of Plasmodium vivax was determined by enzyme-linked immunosorbent assay (ELISA). The ELISA capture antigens were a synthetic peptide of the principal variant sequence ANGAGNQPG and a candidate P vivax vaccine that contained the predominant repeat sequence GDRAA/DGQPA. Serological evidence of recent inoculation with the variant was found throughout Thailand and in migrants from Cambodia, Malaysia, and Burma. IgG antibody to the two P vivax circumsporozoite proteins was detected in 217 of 804 test sera (27%). Within the regions studied the proportion of positive sera specific for the variant epitope ranged from 28% to 66%. A vaccine against the predominant repeat domain may rapidly select for the variant, which already appears to be widespread within Thailand.
  2. Parker D, Lerdprom R, Srisatjarak W, Yan G, Sattabongkot J, Wood J, et al.
    Malar J, 2012 Aug 21;11:290.
    PMID: 22908880 DOI: 10.1186/1475-2875-11-290
    BACKGROUND: Drug and multidrug-resistant Plasmodium falciparum malaria has existed in Thailand for several decades. Furthermore, Thailand serves as a sentinel for drug-resistant malaria within the Greater Mekong sub-region. However, the drug resistance situation is highly dynamic, changing quickly over time. Here parasite in vitro drug sensitivity is reported for artemisinin derivatives, mefloquine, chloroquine and quinine, across Thailand.

    METHODS: Blood was drawn from patients infected with P. falciparum in seven sentinel provinces along Thai international borders with Cambodia, Myanmar, Laos, and Malaysia. In vitro parasite sensitivity was tested using the World Health Organization's microtest (mark III) (between 1994 and 2002) and the histidine-rich protein-2 (HRP2)-based enzyme-linked immunosorbent assay (in 2010). Following World Health Organization protocol, at least 30 isolates were collected for each province and year represented in this study. Where possible, t-tests were used to test for significant differences.

    RESULTS: There appears to be little variation across study sites with regard to parasite sensitivity to chloroquine. Quinine resistance appears to have been rising prior to 1997, but has subsequently decreased. Mefloquine sensitivity appears high across the provinces, especially along the north-western border with Myanmar and the eastern border with Cambodia. Finally, the data suggest that parasite sensitivity to artemisinin and its derivatives is significantly higher in provinces along the north-western border with Myanmar.

    CONCLUSIONS: Parasite sensitivity to anti-malarials in Thailand is highly variable over time and largely mirrors official drug use policy. The findings with regard to reduced sensitivity to artemisinin derivatives are supported by recent reports of reduced parasite clearance associated with artemisinin. This trend is alarming since artemisinin is considered the last defence against malaria. Continued surveillance in Thailand, along with increased collaboration and surveillance across the entire Greater Mekong sub-region, is clearly warranted.

  3. Ngernna S, Rachaphaew N, Thammapalo S, Prikchoo P, Kaewnah O, Manopwisedjaroen K, et al.
    Am J Trop Med Hyg, 2019 12;101(6):1397-1401.
    PMID: 31595871 DOI: 10.4269/ajtmh.19-0063
    Although human infections of Plasmodium knowlesi have been found throughout Southeast Asia, most cases originated from Malaysian Borneo. In Thailand, P. knowlesi malaria was considered extremely rare. However, during October 2017-September 2018, there was a surge in the number of reported P. knowlesi cases. Here, a series of six cases of P. knowlesi malaria found during this period in Songkhla and Narathiwat provinces of southern Thailand are presented. All cases were confirmed by polymerase chain reaction. The unprecedented case number in the affected area is a warning sign of an increasing P. knowlesi burden in the south of Thailand.
  4. Tapaopong P, Chainarin S, Mala A, Rannarong A, Kangkasikorn N, Kusolsuk T, et al.
    bioRxiv, 2024 Jun 27.
    PMID: 38979329 DOI: 10.1101/2024.06.27.600943
    Recent reports from Thailand reveal a substantial surge in Plasmodium knowlesi cases over the past decade, with a more than eightfold increase in incidence by 2023 compared to 2018. This study investigates temporal changes in genetic polymorphism associated with the escalating transmission of P. knowlesi malaria in Thailand over the past two decades. Twenty-five P. knowlesi samples collected in 2018-2023 were sequenced for the 42-kDa region of pkmsp1 and compared with 24 samples collected in 2000-2009, focusing on nucleotide diversity, natural selection, recombination rate, and population differentiation. Seven unique haplotypes were identified in recent samples, compared to 15 in earlier samples. Nucleotide and haplotype diversities were lower in recent samples (π = 0.016, Hd = 0.817) than in earlier samples (π = 0.018, Hd = 0.942). Significantly higher synonymous substitution rates were observed in both sample sets (dS - dN = 2.77 and 2.43, p < 0.05), indicating purifying selection and reduced genetic diversity over time. Additionally, 8 out of 17 mutation points were located on B-cell epitopes, suggesting an adaptive response by the parasites to evade immune recognition. Population differentiation analysis using the fixation index (Fst) revealed high genetic differentiation between parasite populations in central and southern Thailand or Malaysia. Conversely, the relatively lower Fst value between southern Thailand and Malaysia suggests a closer genetic relationship, possibly reflecting historical gene flow. In conclusion, our findings highlight a decline in genetic diversity and evidence of purifying selection associated with the recently increased incidence of P. knowlesi malaria in Thailand. The minor genetic differentiation between P. knowlesi populations from southern Thailand and Malaysia suggests a shared recent ancestry of these parasites and underscores the need for coordinated efforts between the two countries for the elimination of P. knowlesi.
  5. Longley RJ, Grigg MJ, Schoffer K, Obadia T, Hyslop S, Piera KA, et al.
    Cell Rep Med, 2022 06 21;3(6):100662.
    PMID: 35732155 DOI: 10.1016/j.xcrm.2022.100662
    Serological markers are a promising tool for surveillance and targeted interventions for Plasmodium vivax malaria. P. vivax is closely related to the zoonotic parasite P. knowlesi, which also infects humans. P. vivax and P. knowlesi are co-endemic across much of South East Asia, making it important to design serological markers that minimize cross-reactivity in this region. To determine the degree of IgG cross-reactivity against a panel of P. vivax serological markers, we assayed samples from human patients with P. knowlesi malaria. IgG antibody reactivity is high against P. vivax proteins with high sequence identity with their P. knowlesi ortholog. IgG reactivity peaks at 7 days post-P. knowlesi infection and is short-lived, with minimal responses 1 year post-infection. We designed a panel of eight P. vivax proteins with low levels of cross-reactivity with P. knowlesi. This panel can accurately classify recent P. vivax infections while reducing misclassification of recent P. knowlesi infections.
  6. Thriemer K, Ley B, Bobogare A, Dysoley L, Alam MS, Pasaribu AP, et al.
    Malar J, 2017 04 05;16(1):141.
    PMID: 28381261 DOI: 10.1186/s12936-017-1784-1
    The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by  the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
  7. Thriemer K, Bobogare A, Ley B, Gudo CS, Alam MS, Anstey NM, et al.
    Malar J, 2018 Jun 20;17(1):241.
    PMID: 29925430 DOI: 10.1186/s12936-018-2380-8
    The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links