METHODS: TC-16 was screened for phytochemicals. Phenolic and flavonoid contents of TC-16 and its individual ingredients were determined, followed by assessment of antioxidant properties using in vitro assays including 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and β-carotene bleaching (BCB) assays. Interactions among the herbs were also investigated by calculating the difference in antioxidant activity and combination index.
RESULTS: Alkaloids, flavonoids, terpenoids, saponins and glycosides were present in TC-16. TC-16 possessed the highest phenolic (46.14 ± 1.40 mg GAE/g) and flavonoid (132.69 ± 1.43 mg CE/g) contents following C. longa. Synergistic antioxidant activity among the herbs was evident in ORAC and BCB assays which uses mainly hydrogen atom transfer-based antioxidant mechanisms.
CONCLUSIONS: TC-16 demonstrated roles in combating free radicals. In a PHF, synergistic interaction among the herbs is observed in some but not all mechanisms. Mechanisms showing synergistic interactions should be highlighted to maximise the beneficial property of the PHF.
METHODS: One hundred Malay female patients with SLE were recruited between January 2016 and October 2017 from a nephrology clinic. All patients were genotyped for HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1 alleles using PCR sequence-specific oligonucleotides method on Luminex platform. A total of 951 HLA genotyped population-based Malay control subjects was used for association testing by means of OR with 95% CIs.
RESULTS: Our findings convincingly validated common associations between HLA-A*11 (OR=1.65, p=3.36×10-3, corrected P (Pc)=4.03×10-2) and DQB1*05:01 (OR=1.56, p=2.02×10-2, Pc=non-significant) and SLE susceptibility in the Malay population. In contrast, DQB1*03:01 (OR=0.51, p=4.06×10-4, Pc=6.50×10-3) were associated with decreased risk of SLE in Malay population. Additionally, we also detected novel associations of susceptibility HLA genes (ie, HLA-B*38:02, DPA1*02:02, DPB1*14:01) and protective HLA genes (ie, DPA1*01:03). When comparing the current data with data from previously published studies from Caucasian, African and Asian populations, DRB1*15 alleles, DQB1*03:01 and DQA1*01:02 were corroborated as universal susceptibility and protective genes.
CONCLUSIONS: This study reveals multiple HLA alleles associated with susceptibility and protection against risk of developing SLE in Malay female population with renal disorders. In addition, the published data from different ethnic populations together with our study further support the notion that the genetic effects from association with DRB1*15:01/02, DQB1*03:01 and DQA1*01:02 alleles are generalised to multiple ethnic populations of Caucasian, African and Asian descents.