Displaying all 12 publications

Abstract:
Sort:
  1. Shirbhate E, Pandey J, Patel VK, Veerasamy R, Rajak H
    Turk J Pharm Sci, 2023 Aug 22;20(4):270-284.
    PMID: 37606012 DOI: 10.4274/tjps.galenos.2022.12269
    The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for histone deacetylase (HDAC) inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anticancer activity. We have selected a dataset from earlier research findings. The target and ligand molecules were procured from recognized databases and incorporated into pivotal findings such as molecular docking (XP glide), e-pharmacophore study and 3D QSAR model designing study (phase). Docking revealed molecule 39 with better docking score and well binding contact with the protein. 3D QSAR analysis, which was performed for partial least squares factor 5 reported good 0.9877 and 0.7142 as R2 and Q2 values and low standard of deviation: 0.1049 for hypothesis AADRR.139. Based on the computational outcome, it has been concluded that molecule 39 is an effective and relevant candidate for inhibition of HDAC activity. Moreover, these computational approaches motivate to discover novel drug candidates in pharmacological and healthcare sectors.
  2. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Sinha BN, et al.
    Mini Rev Med Chem, 2021;21(8):1004-1016.
    PMID: 33280595 DOI: 10.2174/1389557520666201204162103
    The novel coronavirus disease-19 (COVID-19) is a global pandemic that emerged from Wuhan, China, and has spread all around the world, affecting 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 updates of August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine exists. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID- 19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in clinical uses or studies on COVID-19 and also focuses on the mode of action of drugs being repositioned against COVID-19.
  3. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Rajak H
    Future Oncol, 2020 Oct;16(30):2457-2469.
    PMID: 32815411 DOI: 10.2217/fon-2020-0385
    HDAC inhibitors (HDACi) play an essential role in various cellular processes, such as differentiation and transcriptional regulation of key genes and cytostatic factors, cell cycle arrest and apoptosis that facilitates the targeting of epigenome of eukaryotic cells. In the majority of cancers, only a handful of patients receive optimal benefit from chemotherapeutics. Additionally, there is emerging interest in the use of HDACi to modulate the effects of ionizing radiations. The use of HDACi with radiotherapy, with the goal of reaching dissimilar, often distinct pathways or multiple biological targets, with the expectation of synergistic effects, reduced toxicity and diminished intrinsic and acquired resistance, conveys an approach of increasing interest. In this review, the clinical potential of HDACi in combination with radiotherapy is described as an efficient synergy for cancer treatment will be overviewed.
  4. Shirbhate E, Patel VK, Tiwari P, Kore R, Veerasamy R, Mishra A, et al.
    Curr Top Med Chem, 2022;22(22):1849-1867.
    PMID: 36082857 DOI: 10.2174/1568026622666220907114443
    BACKGROUND: The management of Alzheimer's disease is challenging due to its complexity. However, the currently approved and marketed treatments for this neurodegenerative disorder revolves around cholinesterase inhibitors, glutamate regulators, or the combination of these agents. Despite the prompt assurance of many new drugs, several agents were unsuccessful, especially in phase II or III trials, not meeting efficacy endpoints.

    OBJECTIVE: The execution of effective treatment approaches through further trials investigating a rational combination of agents is necessitude for Alzheimer's disease.

    METHODS: For this review, more than 248 relevant scientific papers were considered from a variety of databases (Scopus, Web of Science, Google Scholar, ScienceDirect, and PubMed) using the keywords Alzheimer's disease, amyloid-β, combination therapies, cholinesterase inhibitors, dementia, glutamate regulators, AD hypothesis.

    RESULT AND DISCUSSION: The researcher's intent is to either develop a disease-modifying therapeutic means for aiming in the early phases of dementia and/or optimize the available symptomatic treatments principally committed to the more advanced stages of Alzheimer's. Since Alzheimer's possesses multifactorial pathogenesis, designing a multimodal therapeutic intervention for targeting different pathological processes of dementia may appear to be the most practical method to alter the course of disease progression.

    CONCLUSION: The combination approach may even allow for providing individual agents in lower doses, with reducible costs and side effects. Numerous studies on combination therapy predicted better clinical efficacy than monotherapy. The literature review highlights the major clinical studies (both symptomatic and disease-modifying) conducted in the past decade on combination therapy to combat cognitive disorder.

  5. Patel VK, Shirbhate E, Tiwari P, Kore R, Veerasamy R, Mishra A, et al.
    Curr Med Chem, 2023;30(24):2762-2795.
    PMID: 36154583 DOI: 10.2174/0929867329666220922105615
    Multi-targeted agents can interact with multiple targets sequentially, resulting in synergistic and more effective therapies for several complicated disorders, including cancer, even with relatively modest activity. Histone deacetylase (HDAC) inhibitors are low molecular weight small compounds that increase the acetylation of histone and nonhistone proteins, altering gene expression and thereby impacting angiogenesis, metastasis, and apoptosis, among other processes. The HDAC inhibitors affect multiple cellular pathways thus producing adverse issues, causing therapeutic resistance, and they have poor pharmacokinetic properties. The designing of HDAC-based dual/multi-target inhibitor is an important strategy to overcome adverse effects, drug resistance and increase the effectiveness in controlling cancer. The selection of target combinations to design multitarget HDAC inhibitor is generally accomplished on the basis of systematic highthroughput screening (HTS), network pharmacology analysis methods. The identification of the pharmacophore against individual targets is performed using rational or computation methods. The identified pharmacophore can combine with merged, fused, or linked with the cleavable or non-cleavable linker to retain the interaction with the original target while being compatible with the other target. The objective of this review is to elucidate the potential targets' design strategies, biological activity, and the recent development of dual/multi-targeting HDAC inhibitors as potential anticancer agents. This review elucidates the designing strategies of the potential target along with biological activity and the recent development of dual/multi-targeting HDAC inhibitors as potential anticancer agents. The development of HDAC-based dual/multi-target inhibitors is important for overcoming side effects, drug resistance, and effective cancer control.
  6. Patel VK, Shirbhate E, Patel P, Veerasamy R, Sharma PC, Rajak H
    PMID: 34751250 DOI: 10.1186/s43088-021-00165-0
    Background: The World Health Organization (WHO) announced the COVID-19 occurrence as a global pandemic in March 2020. The treatment of SARS-CoV-2 patients is based on the experience gained from SARS-CoV and MERS-CoV infection during 2003. There is no clinically accepted therapeutic drug(s) accessible yet for the treatment of COVID-19.

    Main body: Corticosteroids, i.e., dexamethasone, methylprednisolone, hydrocortisone and prednisone are used alone or in combination for the treatment of moderate, severe and critically infected COVID-19 patients who are hospitalized and require supplemental oxygen as per current management strategies and guidelines for COVID-19 published by the National Institutes of Health. Corticosteroids are recorded in the WHO model list of essential medicines and are easily accessible worldwide at a cheaper cost in multiple formulations and various dosage forms. Corticosteroid can be used in all age group of patients, i.e., children, adult, elderly and during pregnancy or breastfeeding women. Corticosteroids have potent anti-inflammatory and immunosuppressive effects in both primary and secondary immune cells, thereby reducing the generation of proinflammatory cytokines and chemokines and lowering the activation of T cells, monocytes and macrophages. The corticosteroids should not be used in the treatment of non-severe COVID-19 patients because corticosteroids suppress the immune response and reduce the symptoms and associated side effects such as slow recovery, bacterial infections, hypokalemia, mucormycosis and finally increase the chances of death.

    Conclusion: Intensive research on corticosteroid therapy in COVID-19 treatment is urgently needed to elucidate their mechanisms and importance in contributing toward successful prevention and treatment approaches. Hence, this review emphasizes on recent advancement on corticosteroid therapy for defining their importance in overcoming SARS-CoV-2 pandemic, their mechanism, efficacy and extent of corticosteroids in the treatment of COVID-19 patients.

  7. Patel V, Vaishnaw A, Shirbhate E, Kore R, Singh V, Veerasamy R, et al.
    Mini Rev Med Chem, 2023 Oct 10.
    PMID: 37861053 DOI: 10.2174/0113895575262104230928042150
    Cortisol, commonly known as the "stress hormone," plays a critical role in the body's response to stress. Elevated cortisol levels have been associated with various mental disorders, including anxiety, depression, and post-traumatic stress disorder. Consequently, researchers have explored cortisol modulation as a promising avenue for treating these conditions. However, the availability of research on cortisol as a therapeutic option for mental disorders is limited, and existing studies employ diverse methodologies and outcome measures. This review article aimed to provide insights into different treatment approaches, both pharmacological and non-pharmacological, which can effectively modulate cortisol levels. Pharmacological interventions involve the use of substances, such as somatostatin analogs, dopamine agonists, corticotropin-releasing hormone antagonists, and cortisol synthesis inhibitors. Additionally, non-pharmacological techniques, including cognitivebehavioral therapy, herbs and supplements, transcranial magnetic stimulation, lifestyle changes, and surgery, have been investigated to reduce cortisol levels. The emerging evidence suggests that cortisol modulation could be a promising treatment option for mental disorders. However, more research is needed to fully understand the effectiveness and safety of these therapies.
  8. Shirbhate E, Singh V, Kore R, Vishwakarma S, Veerasamy R, Tiwari AK, et al.
    Curr Top Med Chem, 2024 Jan 22.
    PMID: 38258788 DOI: 10.2174/0115680266284527240118041129
    Scientists are constantly researching and launching potential chemotherapeutic agents as an irreplaceable weapon to fight the battle against cancer. Despite remarkable advancement over the past several decades to wipe out cancer through early diagnosis, proper prevention, and timely treatment, cancer is not ready to give up and leave the battleground. It continuously tries to find some other way to give a tough fight for its survival, either by escaping from the effect of chemotherapeutic drugs or utilising its own chemical messengers like cytokines to ensure resistance. Cytokines play a significant role in cancer cell growth and progression, and the present article highlights their substantial contribution to mechanisms of resistance toward therapeutic drugs. Multiple clinical studies have even described the importance of specific cytokines released from cancer cells as well as stromal cells in conferring resistance. Herein, we discuss the different mechanism behind drug resistance and the crosstalk between tumor development and cytokines release and their contribution to showing resistance towards chemotherapeutics. As a part of this review, different approaches to cytokines profile have been identified and employed to successfully target new evolving mechanisms of resistance and their possible treatment options.
  9. Shirbhate E, Singh V, Jahoriya V, Mishra A, Veerasamy R, Tiwari AK, et al.
    Eur J Med Chem, 2024 Jan 05;263:115938.
    PMID: 37989059 DOI: 10.1016/j.ejmech.2023.115938
    A significant advancement in the field of epigenetic drug discovery has been evidenced in recent years. Epigenetic alterations are hereditary, nevertheless reversible variations to DNA or histone adaptations that regulate gene function individualistically of the fundamental sequence. The design and synthesis of various drugs targeting epigenetic regulators open a new door for epigenetic-targeted therapies to parade worthwhile therapeutic potential for haematological and solid malignancies. Several ongoing clinical trials on dual targeting strategy are being conducted comprising HDAC inhibitory component and an epigenetic regulating agent. In this perspective, the review discusses the pharmacological aspects of HDAC and other epigenetic regulating factors as dual inhibitors as an emerging alternative approach for combination therapies.
  10. Shirbhate E, Singh V, Mishra A, Jahoriya V, Veerasamy R, Tiwari AK, et al.
    Mini Rev Med Chem, 2024 Feb 09.
    PMID: 38343053 DOI: 10.2174/0113895575287242240129120002
    Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.
  11. Singh V, Shirbhate E, Kore R, Mishra A, Johariya V, Veerasamy R, et al.
    Mini Rev Med Chem, 2024 Feb 21.
    PMID: 38385496 DOI: 10.2174/0113895575283895240207065454
    Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.
  12. Shirbhate E, Pandey J, Patel VK, Kamal M, Jawaid T, Gorain B, et al.
    Pharmacol Rep, 2021 Dec;73(6):1539-1550.
    PMID: 34176080 DOI: 10.1007/s43440-021-00303-6
    Angiotensin-converting enzyme (ACE) and its homologue, ACE2, are commonly allied with hypertension, renin-angiotensin-aldosterone system pathway, and other cardiovascular system disorders. The recent pandemic of COVID-19 has attracted the attention of numerous researchers on ACE2 receptors, where the causative viral particle, SARS-CoV-2, is established to exploit these receptors for permitting their entry into the human cells. Therefore, studies on the molecular origin and pathophysiology of the cell response in correlation to the role of ACE2 receptors to these viruses are bringing novel theories. The varying level of manifestation and importance of ACE proteins, underlying irregularities and disorders, intake of specific medications, and persistence of assured genomic variants at the ACE genes are potential questions raising nowadays while observing the marked alteration in response to the SARS-CoV-2-infected patients. Therefore, the present review has focused on several raised opinions associated with the role of the ACE2 receptor and its impact on COVID-19 pathogenesis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links