Displaying all 16 publications

Abstract:
Sort:
  1. Karami A, Teh SJ, Zakaria MP, Courtenay SC
    J Environ Sci (China), 2015 Dec;38:95-102.
    PMID: 26702972 DOI: 10.1016/j.jes.2015.05.009
    Naturally-occurring and artificially-induced polyploids have been documented in various fish species but to date no comparison has been reported of the impacts of ploidy on fish biomarker responses to organic pollutants. This study describes effects of ploidy, gender, and dose on biliary fluorescent aromatic compound (FAC) concentrations, hepatic ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST) activities in one of the most commonly cultured warm-water species, the African catfish Clarias gariepinus. Recently matured male and female diploid and triploid fish were intraperitoneally (i.p.) injected with 0, 5 or 25mg/kg benzo[a]pyrene (BaP) and liver and gallbladder were sampled 48hr later. No significant differences were found between ploidies in bile concentrations of 7,8 dihydrodiolbenzo[a]pyrene (7,8D BaP), 1-hydroxybenzo[a]pyrene (1-OH BaP) or 3-hydroxybenzo[a]pyrene (3-OH BaP). However, concentrations of the biliary FACs did differ between males and females at different dose of injection with generally higher concentrations in females at the low dose of BaP and higher concentrations in males at the higher BaP concentration. Hepatic EROD activity did not exhibit gender-dependent difference, whereas it was significantly higher in triploids than diploids. GST activities were not significantly influenced by any of the tested factors. This work advanced our understanding of the role of ploidy, gender, and dose in biotransformation of pollutants in fish.
  2. Karami A, Christianus A, Bahraminejad B, Gagné F, Courtenay SC
    Ecotoxicol Environ Saf, 2012 Mar;77:28-34.
    PMID: 22101109 DOI: 10.1016/j.ecoenv.2011.10.026
    This study examined the potential of artificial neural network (ANN) modeling to infer timing, route and dose of contaminant exposure from biomarkers in a freshwater fish. Hepatic glutathione S-transferase (GST) activity and biliary concentrations of BaP, 1-OH BaP, 3-OH BaP and 7,8D BaP were quantified in juvenile Clarias gariepinus injected intramuscularly or intraperitoneally with 10-50 mg/kg benzo[a]pyrene (BaP) 1-3 d earlier. A feedforward multilayer perceptron (MLP) ANN resulted in more accurate prediction of timing, route and exposure dose than a linear neural network or a radial basis function (RBF) ANN. MLP sensitivity analyses revealed contribution of all five biomarkers to predicting route of exposure but no contribution of hepatic GST activity or one of the two hydroxylated BaP metabolites to predicting time of exposure and dose of exposure. We conclude that information content of biomarkers collected from fish can be extended by judicious use of ANNs.
  3. Woodman GH, Wilson SC, Li VY, Renneberg R
    Mar Pollut Bull, 2004 Dec;49(11-12):964-73.
    PMID: 15556182
    Little is known about the spatial and temporal distribution of blast fishing which hampers enforcement against this activity. We have demonstrated that a triangular array of hydrophones 1 m apart is capable of detecting blast events whilst effectively rejecting other sources of underwater noise such as snapping shrimp and nearby boat propellers. A total of 13 blasts were recorded in Sepangor bay, North of Kota Kinabalu, Sabah, Malaysia from 7th to 15th July 2002 at distances estimated to be up to 20 km, with a directional uncertainty of 0.2 degrees . With such precision, a network of similar hydrophone arrays has potential to locate individual blast events by triangulation to within 30 m at a range of 10 km.
  4. Karami A, Keiter S, Hollert H, Courtenay SC
    Environ Sci Pollut Res Int, 2013 Mar;20(3):1586-95.
    PMID: 22752811 DOI: 10.1007/s11356-012-1027-5
    This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies.
  5. Simon C, Soga T, Parhar I
    Int J Mol Sci, 2023 Mar 23;24(7).
    PMID: 37047030 DOI: 10.3390/ijms24076056
    The hypothalamic neurohormone kisspeptin-10 (KP-10) was inherently implicated in cholinergic pathologies when aberrant fluctuations of expression patterns and receptor densities were discerned in neurodegenerative micromilieus. That said, despite variable degrees of functional redundancy, KP-10, which is biologically governed by its cognate G-protein-coupled receptor, GPR54, attenuated the progressive demise of α-synuclein (α-syn)-rich cholinergic-like neurons. Under explicitly modeled environments, in silico algorithms further rationalized the surface complementarities between KP-10 and α-syn when KP-10 was unambiguously accommodated in the C-terminal binding pockets of α-syn. Indeed, the neuroprotective relevance of KP-10's binding mechanisms can be insinuated in the amelioration of α-syn-mediated neurotoxicity; yet it is obscure whether these extenuative circumstances are contingent upon prior GPR54 activation. Herein, choline acetyltransferase (ChAT)-positive SH-SY5Y neurons were engineered ad hoc to transiently overexpress human wild-type or E46K mutant α-syn while the mitigation of α-syn-induced neuronal death was ascertained via flow cytometric and immunocytochemical quantification. Recapitulating the specificity observed on cell viability, exogenously administered KP-10 (0.1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated apoptosis and mitochondrial depolarization in cholinergic differentiated neurons. In particular, co-administrations with a GPR54 antagonist, kisspeptin-234 (KP-234), failed to abrogate the robust neuroprotection elicited by KP-10, thereby signifying a GPR54 dispensable mechanism of action. Consistent with these observations, KP-10 treatment further diminished α-syn and ChAT immunoreactivity in neurons overexpressing wild-type and E46K mutant α-syn. Overall, these findings lend additional credence to the previous notion that KP-10's binding zone may harness efficacious moieties of neuroprotective intent.
  6. Karami A, Syed MA, Christianus A, Willett KL, Mazzeo JR, Courtenay SC
    J Hazard Mater, 2012 Jul 15;223-224:84-93.
    PMID: 22608400 DOI: 10.1016/j.jhazmat.2012.04.051
    In this study we sought to optimize recovery of fluorescent aromatic compounds (FACs) from the bile of African catfish (Clarias gariepinus) injected with 10mg/kg benzo[a]pyrene (BaP). Fractions of pooled bile were hydrolyzed, combined with ten volumes of methanol, ethanol, acetonitrile, or acetone, centrifuged and supernatants were analyzed by high-performance liquid chromatography with fluorescent detection (HPLC/FL). As well, to test whether FACs were being lost in solids from the centrifugation, pellets were resuspended, hydrolyzed and mixed with six volumes of the organic solvent that produced best FAC recovery from the supernatant, and subjected to HPLC/FL. Highest FAC concentrations were obtained with 2000μl and 1250μl acetone for supernatants and resuspended pellets respectively. FACs concentrations were negatively correlated with biliary protein content but were unaffected by addition of bovine serum albumin (BSA) followed by no incubation indicating that the presence of proteins in the biliary mixture does not simply interfere with detection of FACs. In another experiment, efficiency of acetone addition was compared to two different liquid-liquid extractions (L-LEs). Acetone additions provided significantly higher biliary FACs than the L-LE methods. The new two-stage bile preparation with acetone is an efficient, inexpensive and easily performed method.
  7. Karami A, Christianus A, Ishak Z, Shamsuddin ZH, Masoumian M, Courtenay SC
    J Hazard Mater, 2012 May 15;215-216:108-14.
    PMID: 22417397 DOI: 10.1016/j.jhazmat.2012.02.038
    This study examined the potential of Pseudomonas aeruginosa abundance in the intestines of fish as an indicator of exposure to benzo[a]pyrene (BaP). P. aeruginosa populations were enumerated in juvenile African catfish (Clarias gariepinus) injected intramuscularly three days previous with 0, 10, 30, 40, 50 or 70mg/kg of BaP. Hepatic EROD and GST activities and biliary fluorescent aromatic compounds (FACs) 1-OH BaP, 3-OH BaP, 7,8-D BaP and BaP were quantified to investigate agreements between the new indicator and established fish biomarkers. The shape of bacterial population (logarithm of colony-forming unit) dose-response curve generally matched those of biliary FACs concentrations. Conversely, the EROD and GST dose-response curves were generally the mirror images of the bacterial population curve. Changes in intestinal P. aeruginosa population appear to be an indirect effect of BaP exposure because exposure to 0-100μg/ml BaP had no effect on P. aeruginosa populations grown on agar plates containing BaP. Using intestinal P. aeruginosa population of fish as a universal indicator of BaP pollution in aquatic environments is discussed.Conversely, the EROD and GST dose-response curves were generally the mirror images of the bacterial population curve.
  8. Karami A, Goh YM, Jahromi MF, Lazorchak JM, Abdullah M, Courtenay SC
    Sci Total Environ, 2016 07 01;557-558:204-11.
    PMID: 26994807 DOI: 10.1016/j.scitotenv.2016.03.030
    The impacts of environmental stressors on polyploid organisms are largely unknown. This study investigated changes in morphometric, molecular, and biochemical parameters in full-sibling diploid and triploid African catfish (Clarias gariepinus) in response to chlorpyrifos (CPF) exposures. Juvenile fish were exposed to three concentrations of CPF (mean measured μg/L (SD): 9.71 (2.27), 15.7 (3.69), 31.21 (5.04)) under a static-renewal condition for 21days. Diploid control groups had higher hepatosomatic index (HSI), plasma testosterone (T), and brain GnRH and cyp19a2 expression levels than triploids. In CPF-exposed groups, changes in HSI, total weight and length were different between the diploid and triploid fish. In contrast, condition factor did not alter in any of the treatments, while visceral-somatic index (VSI) changed only in diploids. In diploid fish, exposure to CPF did not change brain 11β-hsd2, ftz-f1, foxl2, GnRH or cyp19a2 mRNA levels, while reduced tph2 transcript levels compared to the control group. In contrast, 11β-hsd2 and foxl2 expression levels were changed in triploids following CPF exposures. In diploids, plasma T levels showed a linear dose-response reduction across CPF treatments correlating with liver weight and plasma total cholesterol concentrations. In contrast, no changes in plasma cholesterol and T concentrations were observed in triploids. Plasma cortisol and 17-β estradiol (E2) showed no response to CPF exposure in either ploidy. Results of this first comparison of biomarker responses to pesticide exposure in diploid and polyploid animals showed substantial differences between diploid and triploid C. gariepinus.
  9. Karami A, Karbalaei S, Zad Bagher F, Ismail A, Simpson SL, Courtenay SC
    Environ Pollut, 2016 Aug;215:170-177.
    PMID: 27182978 DOI: 10.1016/j.envpol.2016.05.014
    Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure.
  10. Karami A, Omar D, Lazorchak JM, Yap CK, Hashim Z, Courtenay SC
    Environ Res, 2016 Nov;151:313-320.
    PMID: 27522569 DOI: 10.1016/j.envres.2016.08.006
    Influence of waterborne butachlor (BUC), a commonly used pesticide, on morphometric, biochemical, and molecular biomarkers was evaluated in juvenile, full sibling, diploid and triploid African catfish (Clarias gariepinus). Fish were exposed for 21 days to one of three concentrations of BUC [mean measured µg/L: 22, 44 or 60]. Unexposed (control) triploids were heavier and longer and had higher visceral-somatic index (VSI) than diploids. Also, they had lighter liver weight (HSI) and showed lower transcript levels of brain gonadotropin-releasing hormone (GnRH), aromatase (cyp191b) and fushi tarazu-factor (ftz-f1), and plasma testosterone levels than diploids. Butachlor treatments had no effects, in either diploid or triploid fish, on VSI, HSI, weight or length changes, condition factor (CF), levels of plasma testosterone, 17-β estradiol (E2), cortisol, cholesterol, or mRNA levels of brain tryptophan hydroxylase (tph2), forkhead box L2 (foxl2), and 11 β-hydroxysteroid dehydrogenase type 2 (11β-hsd2). Expressions of cyp191b and ftz-f1 in triploids were upregulated by the two highest concentrations of BUC. In diploid fish, however, exposures to all BUC concentrations decreased GnRH transcription and the medium BUC concentration decreased ftz-f1 transcription. Substantial differences between ploidies in basal biomarker responses are consistent with the reported impaired reproductive axis in triploid C. gariepinus. Furthermore, the present study showed the low impact of short term exposure to BUC on reproductive axis in C. gariepinus.
  11. Kara J, Molina-Acevedo IC, Zanol J, Simon C, Idris I
    PeerJ, 2020;8:e10076.
    PMID: 33150064 DOI: 10.7717/peerj.10076
    A vast polychaete fauna is hidden behind complexes of cryptic and pseudo-cryptic species, which has greatly hindered our understanding of species diversity in several regions worldwide. Among the eunicids, Marphysa sanguinea Montagu, 1813 is a typical example, recorded in three oceans and with various species considered its junior synonyms. In South Africa, specimens previously misidentified as M. sanguinea are now known as Marphysa elityeni Lewis & Karageorgopoulos, 2008. Of the six Marphysa Quatrefages, 1865a species recorded from the same region, three have their distributions restricted to South Africa while the others are considered to have worldwide distributions. Here, we evaluated the taxonomic status of the indigenous M. elityeni and investigated the presence of the widespread species Marphysa macintoshi Crossland, 1903 and Marphysa depressa Schmarda, 1861 in South Africa using morphological and molecular data. Our results reveal that M. elityeni is a junior synonym of Marphysa haemasoma, a species previously described from South Africa which is herein reinstated as a valid species. Both M. macintoshi and M. depressa are not present in South Africa and their status as being distributed worldwide deserves further investigation. Marphysa durbanensis Day, 1934 and the new species described here, M. sherlockae n. sp., had been misidentified as M. macintoshi and M. depressa respectively. Thus, the number of Marphysa species with distributions restricted to South Africa increased from three to five. This study reiterates the importance of implementing an integrated taxonomic framework to unravel local biodiversity.
  12. Simon C, Soga T, Okano HJ, Parhar I
    Cell Biosci, 2021 Nov 19;11(1):196.
    PMID: 34798911 DOI: 10.1186/s13578-021-00709-y
    Dementia with Lewy bodies (DLB) is epitomized by the pathognomonic manifestation of α-synuclein-laden Lewy bodies within selectively vulnerable neurons in the brain. By virtue of prion-like inheritance, the α-synuclein protein inexorably undergoes extensive conformational metamorphoses and culminate in the form of fibrillar polymorphs, instigating calamitous damage to the brain's neuropsychological networks. This epiphenomenon is nebulous, however, by lingering uncertainty over the quasi "pathogenic" behavior of α-synuclein conformers in DLB pathobiology. Despite numerous attempts, a monolithic "α-synuclein" paradigm that is able to untangle the enigma enshrouding the clinicopathological spectrum of DLB has failed to emanate. In this article, we review conceptual frameworks of α-synuclein dependent cell-autonomous and non-autonomous mechanisms that are likely to facilitate the transneuronal spread of degeneration through the neuraxis. In particular, we describe how the progressive demise of susceptible neurons may evolve from cellular derangements perpetrated by α-synuclein misfolding and aggregation. Where pertinent, we show how these bona fide mechanisms may mutually accentuate α-synuclein-mediated neurodegeneration in the DLB brain.
  13. Gnanasegaran N, Govindasamy V, Simon C, Gan QF, Vincent-Chong VK, Mani V, et al.
    Eur J Clin Invest, 2017 Mar 30.
    PMID: 28369799 DOI: 10.1111/eci.12753
    BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic (DA-ergic) neurons in the substantia nigra (SN) and represented as a huge threat to the geriatric population. Cell replacement therapies (CRTs) have been proposed as a promising strategy to slow down or replace neuronal loss. Among the widely available cell sources, dental pulp stem cells (DPSCs) portray as an attractive source primarily due to their neural crest origin, ease of tissue procurement and less ethical hurdles.

    MATERIALS AND METHODS: We first demonstrated the in vitro differentiation ability of DPSCs towards DA-ergic-like cells before evaluating their neuro-protection/neuro-restoration capacities in MPTP-induced mice. Transplantation via intrathecal was performed with behavioural assessments being evaluated every fortnight. Subsequent analysis investigating their immuno-modulatory behaviour was conducted using neuronal and microglial cell lines.

    RESULTS: It was apparent that the behavioural parameters began to improve corresponding to tyrosine hydroxylase (TH), dopamine transporter (DAT) and dopamine decarboxylase (AADC) immunostaining in SN and striatum as early as 8-week post-transplantation (P < 0·05). About 60% restoration of DA-ergic neurons was observed at SN in MPTP-treated mice after 12-week post-transplantation. Similarly, their ability to reduce toxic effects of MPTP (DNA damages, reactive oxygen species and nitric oxide release) and regulate cytokine levels was distinctly noted (P < 0·05) upon exposure in in vitro model.

    CONCLUSIONS: Our results suggest that DPSCs may provide a therapeutic benefit in the old-aged PD mice model and may be explored in stem cell-based CRTs especially in geriatric population as an attempt towards 'personalized medicine'.

  14. Simon C, Gan QF, Kathivaloo P, Mohamad NA, Dhamodharan J, Krishnan A, et al.
    Int J Mol Sci, 2019 Jan 29;20(3).
    PMID: 30699944 DOI: 10.3390/ijms20030568
    Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration.
  15. Moreno I, Garcia-Grau I, Perez-Villaroya D, Gonzalez-Monfort M, Bahçeci M, Barrionuevo MJ, et al.
    Microbiome, 2022 Jan 04;10(1):1.
    PMID: 34980280 DOI: 10.1186/s40168-021-01184-w
    BACKGROUND: Previous evidence indicates associations between the female reproductive tract microbiome composition and reproductive outcome in infertile patients undergoing assisted reproduction. We aimed to determine whether the endometrial microbiota composition is associated with reproductive outcomes of live birth, biochemical pregnancy, clinical miscarriage or no pregnancy.

    METHODS: Here, we present a multicentre prospective observational study using 16S rRNA gene sequencing to analyse endometrial fluid and biopsy samples before embryo transfer in a cohort of 342 infertile patients asymptomatic for infection undergoing assisted reproductive treatments.

    RESULTS: A dysbiotic endometrial microbiota profile composed of Atopobium, Bifidobacterium, Chryseobacterium, Gardnerella, Haemophilus, Klebsiella, Neisseria, Staphylococcus and Streptococcus was associated with unsuccessful outcomes. In contrast, Lactobacillus was consistently enriched in patients with live birth outcomes.

    CONCLUSIONS: Our findings indicate that endometrial microbiota composition before embryo transfer is a useful biomarker to predict reproductive outcome, offering an opportunity to further improve diagnosis and treatment strategies. Video Abstract.

  16. Mrkobrada M, Chan MTV, Cowan D, Spence J, Campbell D, Wang CY, et al.
    BMJ Open, 2018 07 06;8(7):e021521.
    PMID: 29982215 DOI: 10.1136/bmjopen-2018-021521
    OBJECTIVES: Covert stroke after non-cardiac surgery may have substantial impact on duration and quality of life. In non-surgical patients, covert stroke is more common than overt stroke and is associated with an increased risk of cognitive decline and dementia. Little is known about covert stroke after non-cardiac surgery.NeuroVISION is a multicentre, international, prospective cohort study that will characterise the association between perioperative acute covert stroke and postoperative cognitive function.

    SETTING AND PARTICIPANTS: We are recruiting study participants from 12 tertiary care hospitals in 10 countries on 5 continents.

    PARTICIPANTS: We are enrolling patients ≥65 years of age, requiring hospital admission after non-cardiac surgery, who have an anticipated length of hospital stay of at least 2 days after elective non-cardiac surgery that occurs under general or neuraxial anaesthesia.

    PRIMARY AND SECONDARY OUTCOME MEASURES: Patients are recruited before elective non-cardiac surgery, and their cognitive function is measured using the Montreal Cognitive Assessment (MoCA) instrument. After surgery, a brain MRI study is performed between postoperative days 2 and 9 to determine the presence of acute brain infarction. One year after surgery, the MoCA is used to assess postoperative cognitive function. Physicians and patients are blinded to the MRI study results until after the last patient follow-up visit to reduce outcome ascertainment bias.We will undertake a multivariable logistic regression analysis in which the dependent variable is the change in cognitive function 1 year after surgery, and the independent variables are acute perioperative covert stroke as well as other clinical variables that are associated with cognitive dysfunction.

    CONCLUSIONS: The NeuroVISION study will characterise the epidemiology of covert stroke and its clinical consequences. This will be the largest and the most comprehensive study of perioperative stroke after non-cardiac surgery.

    TRIAL REGISTRATION NUMBER: NCT01980511; Pre-results.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links