Displaying all 11 publications

Abstract:
Sort:
  1. Subramani T, Rathnavelu V, Alitheen NB
    Mediators Inflamm, 2013;2013:639468.
    PMID: 23690667 DOI: 10.1155/2013/639468
    Gingival overgrowth is a side effect of certain medications. The most fibrotic drug-induced lesions develop in response to therapy with phenytoin, the least fibrotic lesions are caused by cyclosporin A, and the intermediate fibrosis occurs in nifedipine-induced gingival overgrowth. Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because of a persistent tissue repair program. During connective tissue repair, activated gingival fibroblasts synthesize and remodel newly created extracellular matrix. Proteins such as transforming growth factor (TGF), endothelin-1 (ET-1), angiotensin II (Ang II), connective tissue growth factor (CCN2/CTGF), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF) appear to act in a network that contributes to the development of gingival fibrosis. Since inflammation is the prerequisite for gingival overgrowth, mast cells and its protease enzymes also play a vital role in the pathogenesis of gingival fibrosis. Drugs targeting these proteins are currently under consideration as antifibrotic treatments. This review summarizes recent observations concerning the contribution of TGF-β, CTGF, IGF, PDGF, ET-1, Ang II, and mast cell chymase and tryptase enzymes to fibroblast activation in gingival fibrosis and the potential utility of agents blocking these proteins in affecting the outcome of drug-induced gingival overgrowth.
  2. Subramani T, Rathnavelu V, Alitheen NB, Padmanabhan P
    Int J Mol Med, 2015 May;35(5):1151-8.
    PMID: 25812632 DOI: 10.3892/ijmm.2015.2144
    Gingival overgrowth is an undesirable outcome of systemic medication and is evidenced by the accretion of collagenous components in gingival connective tissues along with diverse degrees of inflammation. Phenytoin therapy has been found to induce the most fibrotic lesions in gingiva, cyclosporine caused the least fibrotic lesions, and nifedipine induced intermediate fibrosis in drug‑induced gingival overgrowth. In drug‑induced gingival overgrowth, efficient oral hygiene is compromised and has negative consequences for the systemic health of the patients. Toll‑like receptors (TLRs) are involved in the effective recognition of microbial agents and play a vital role in innate immunity and inflammatory signaling responses. TLRs stimulate fibrosis and tissue repairs in several settings, although with evident differences between organs. In particular, TLRs exert a distinct effect on fibrosis in organs with greater exposure to TLR ligands, such as the gingiva. Cumulative evidence from diverse sources suggested that TLRs can affect gingival overgrowth in several ways. Numerous studies have demonstrated the expression of TLRs in gingival tissues and suggested its potential role in gingival inflammation, cell proliferation and synthesis of the extracellular matrix which is crucial to the development of gingival overgrowth. In the present review, we assessed the role of TLRs on individual cell populations in gingival tissues that contribute to the progression of gingival inflammation, and the involvement of TLRs in the development of gingival overgrowth. These observations suggest that TLRs provide new insight into the connection among infection, inflammation, drugs and gingival fibrosis, and are therefore efficient therapeutic target molecules. We hypothesize that TLRs are critical for the development and progression of gingival overgrowth, and thus blocking TLR expression may serve as a novel target for antifibrotic therapy.
  3. Subramani T, Rathnavelu V, Yeap SK, Alitheen NB
    Mediators Inflamm, 2013;2013:275172.
    PMID: 23431239 DOI: 10.1155/2013/275172
    Mast cells (MCs) are multifunctional effector cells that were originally thought to be involved in allergic disorders. Now it is known that they contain an array of mediators with a multitude of effects on many other cells. MCs have become a recent concern in drug-induced gingival overgrowth (DIGO), an unwanted outcome of systemic medication. Most of the studies have confirmed the significant presence of inflammation as a prerequisite for the overgrowth to occur. The inflammatory changes within the gingival tissue appear to influence the interaction between the inducing drug and the fibroblast activity. The development of antibodies to MC-specific enzymes, tryptase and chymase, has facilitated the study of mast cells in DIGO. Many immunohistochemical studies involving MCs have been conducted; as a result, DIGO tissues are found to have increased the number of MCs in the gingiva, especially in the area of fibrosis. At the cellular level, gingival fibrogenesis is initiated by several mediators which induce the recruitment of a large number of inflammatory cells, including MCs. The purpose of this paper is to access the roles played by MCs in gingival overgrowth to hypothesize a relationship between these highly specialized cells in the pathogenesis of DIGO.
  4. Lam HY, Yusoff K, Yeap SK, Subramani T, Abd-Aziz S, Omar AR, et al.
    Int J Med Sci, 2014;11(12):1240-7.
    PMID: 25317070 DOI: 10.7150/ijms.8170
    Immunotherapy has raised the attention of many scientists because it hold promise to be an attractive therapeutic strategy to treat a number of disorders. In this study, the immunomodulatory effects of low titers of Newcastle disease virus (NDV) AF2240 on human peripheral blood mononuclear cells (PBMC) were analyzed. We evaluated cytokine secretion and PBMC activation by cell proliferation assay, immunophenotyping and enzyme linked immunosorbent assay. The proliferation of the human PBMC was measured to be 28.5% and 36.5% upon treatment with 8 hemaglutinin unit (HAU) and 2 HAU of NDV respectively. Interestingly, the percentage of cells with activating markers CD16 and CD56 were increased significantly. Furthermore, the intracellular perforin and granzyme levels were also increased upon virus infection. Human PBMC treated with NDV titer 8 HAU was found to stimulate the highest level of cytokine production including interferon-γ, interleukin-2 and interleukin-12. The release of these proteins contributes to the antitumor effect of PBMC against MCF-7 breast cancer cells. Based on the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay, activated human PBMC showed high cytolytic efficiency towards human breast tumor cells. In summary, NDV was able to stimulate PBMC proliferation, cytokine secretion and cytolytic activity.
  5. Al-Qubaisi M, Rosli R, Subramani T, Omar AR, Yeap SK, Ali AM, et al.
    Nat Prod Res, 2013;27(23):2216-8.
    PMID: 23767409 DOI: 10.1080/14786419.2013.800979
    Goniothalamin is a biologically active styrylpyrone derivative isolated from various Goniothalamus species. The ability of goniothalamin to induce apoptosis via caspase-3 activation against hepatoblastoma (HepG2) and normal liver cells (Chang cells) was studied using morphological and biochemical evaluations. HepG2 and Chang cells were treated with goniothalamin for 72 h and analysed by TUNEL and Annexin-V/PI staining. Furthermore, the post-mitochondrial caspase-3 was quantified using ELISA. In view of our results, goniothalamin induced apoptosis on treated cells via alteration of cellular membrane integrity and cleavage of DNA. On the other hand, post-mitochondrial caspase-3 activity was significantly elevated in HepG2 cells treated with goniothalamin after 72 h. These findings suggest that goniothalamin induced apoptosis on HepG2 liver cancer cells via induction of caspase-3 with less sensitivity on the cell line of Chang cells.
  6. Shima WN, Ali AM, Subramani T, Mohamed Alitheen NB, Hamid M, Samsudin AR, et al.
    Exp Ther Med, 2015 Jun;9(6):2202-2206.
    PMID: 26136960
    Mesenchymal stem cells (MSCs) are involved in bone formation in the embryo, bone repair and remodeling. The differentiation of these cells is a complex multistep pathway that involves discrete cellular transitions and is similar to that which occurs during hematopoiesis. MSCs have self-renewal capacity without differentiation in long-term culture. In the present study, MSCs were isolated from human bone marrow and characterized by the presence of cluster of differentiation 105 marker using the labeled streptavidin biotin method. The MSCs were cultured in Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, ascorbic acid, β-glycerol phosphate and dexamethasone to differentiate into osteoblasts. Biological in vitro analysis showed the rapid proliferation of the MSCs. Further evaluation of specific osteogenic markers using von Kossa staining and the alkaline phosphate assay demonstrated that the MSCs were stimulated to differentiate into osteoblast-lineage cells. This mesengenic potential indicated that the bone marrow-derived cells were multipotent MSCs. The findings of this study show that bone marrow can be a legitimate source of MSCs for the production of osteoblasts for utilization in bone replacement therapy.
  7. Ang HY, Subramani T, Yeap SK, Omar AR, Ho WY, Abdullah MP, et al.
    Exp Ther Med, 2014 Jun;7(6):1733-1737.
    PMID: 24926376
    Immunomodulators are agents that are able to stimulate or inhibit the immune response. The leaf extracts from Potentilla indica and Dendrophthoe pentandra were analyzed in vitro for immunomodulatory activity and an MTT colorimetric assay was conducted to determine the proliferation of mice splenocytes and thymocytes. A bromodeoxyuridine assay was performed to analyze DNA synthesis and the Trypan blue exclusion method was conducted to evaluate the changes in total cell population. The results indicated that treatment with P. indica and D. pentandra produced a time- and dose-dependent increase in cell viability and proliferation. Following 72 h of treatment with P. indica and D. pentandra, thymocyte proliferation was augmented by 18 and 41%, respectively and splenocyte proliferation increased by 35 and 42%, respectively, when compared with untreated cells. The present study demonstrated that these extracts may act as potential immunostimulants and, thus, represent an alternative source of immunomodulatory compounds for the treatment of human immune-mediated diseases.
  8. Subramani T, Yeap SK, Ho WY, Ho CL, Omar AR, Aziz SA, et al.
    J Cell Mol Med, 2014 Feb;18(2):305-13.
    PMID: 24266867 DOI: 10.1111/jcmm.12188
    Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF-7 cells and induces apoptosis by activation of pro-caspase-8 followed by downstream events, including an increase in reactive oxygen species and the release of pro-apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti-oestrogen-binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM-mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro-oxidant effects of ascorbic acid. Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by acridine-orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose-dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real-time PCR analysis, an impressive increase in FasL and tumour necrosis factor-α (TNF-α) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.
  9. Abu N, Zamberi NR, Yeap SK, Nordin N, Mohamad NE, Romli MF, et al.
    BMC Complement Altern Med, 2018 Jan 27;18(1):31.
    PMID: 29374471 DOI: 10.1186/s12906-018-2102-3
    BACKGROUND: Morinda citrifolia L. that was reported with immunomodulating and cytotoxic effects has been traditionally used to treat multiple illnesses including cancer. An anthraquinone derived from fruits of Morinda citrifolia L., nordamnacanthal, is a promising agent possessing several in vitro biological activities. However, the in vivo anti-tumor effects and the safety profile of nordamnacanthal are yet to be evaluated.

    METHODS: In vitro cytotoxicity of nordamnacanthal was tested using MTT, cell cycle and Annexin V/PI assays on human MCF-7 and MDA-MB231 breast cancer cells. Mice were orally fed with nordamnacanthal daily for 28 days for oral subchronic toxicity study. Then, the in vivo anti-tumor effect was evaluated on 4T1 murine cancer cells-challenged mice. Changes of tumor size and immune parameters were evaluated on the untreated and nordamnacanthal treated mice.

    RESULTS: Nordamnacanthal was found to possess cytotoxic effects on MDA-MB231, MCF-7 and 4T1 cells in vitro. Moreover, based on the cell cycle and Annexin V results, nordamnacanthal managed to induce cell death in both MDA-MB231 and MCF-7 cells. Additionally, no mortality, signs of toxicity and changes of serum liver profile were observed in nordamnacanthal treated mice in the subchronic toxicity study. Furthermore, 50 mg/kg body weight of nordamncanthal successfully delayed the progression of 4T1 tumors in Balb/C mice after 28 days of treatment. Treatment with nordamnacanthal was also able to increase tumor immunity as evidenced by the immunophenotyping of the spleen and YAC-1 cytotoxicity assays.

    CONCLUSION: Nordamnacanthal managed to inhibit the growth and induce cell death in MDA-MB231 and MCF-7 cell lines in vitro and cease the tumor progression of 4T1 cells in vivo. Overall, nordamnacanthal holds interesting anti-cancer properties that can be further explored.

  10. Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, et al.
    Oncol Lett, 2015 Jan;9(1):335-340.
    PMID: 25435988
    Tamoxifen (TAM) is the mainline drug treatment for breast cancer, despite its side effects and the development of resistance. As an alternative approach, in the present study a novel combination therapy was established through combining TAM with nordamnacanthal (NDAM) in order to investigate the additive effect of these drugs in MCF-7 human breast cancer cells. A significant dose-dependent reduction in cell viability and an increase in apoptosis were observed in the MCF-7 cells cotreated with TAM and NDAM compared with the untreated control cells or the cells treated with TAM and NDAM alone (P<0.05). The cytotoxic influence of the combination of TAM and NDAM was found to be two-fold that of the individual agents. Annexin V/propidium iodide double-staining revealed the typical nuclear features of apoptosis. Furthermore, an increase in the proportion of apoptotic, Annexin V-positive cells was observed with the combination therapy. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and the generation of reactive oxygen species. To the best of our knowledge, the findings of the present study are the first to suggest that combining TAM with NDAM may be a potential combination therapy for the treatment of breast cancer and may have the potential to minimize or eliminate the side effects associated with high doses of TAM.
  11. Aziz MY, Omar AR, Subramani T, Yeap SK, Ho WY, Ismail NH, et al.
    Oncol Lett, 2014 May;7(5):1479-1484.
    PMID: 24765160
    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links