METHODS: A Malaysian clinical embedding, based on Word2Vec model, was developed using 29,895 electronic discharge summaries. The embedding was compared against conventional rule-based and FastText embedding on two tasks: abbreviation detection and abbreviation disambiguation. Machine learning classifiers were applied to assess performance.
RESULTS: The Malaysian clinical word embedding contained 7 million word tokens, 24,352 unique vocabularies, and 100 dimensions. For abbreviation detection, the Decision Tree classifier augmented with the Malaysian clinical embedding showed the best performance (F-score of 0.9519). For abbreviation disambiguation, the classifier with the Malaysian clinical embedding had the best performance for most of the abbreviations (F-score of 0.9903).
CONCLUSION: Despite having a smaller vocabulary and dimension, our local clinical word embedding performed better than the larger nonclinical FastText embedding. Word embedding with simple machine learning algorithms can decipher abbreviations well. It also requires lower computational resources and is suitable for implementation in low-resource settings such as Malaysia. The integration of this model into MyHarmony will improve recognition of clinical terms, thus improving the information generated for monitoring Malaysian health care services and policymaking.