Displaying all 5 publications

Abstract:
Sort:
  1. S. Bhatia, K. T. Lee, A. R. Mohamed, Sumathi, S.
    MyJurnal
    Simultaneous removal of SO2 and NO from simulated flue gas by cerium oxide supported over palm shell activated carbon (Ce/PSAC) was studied in a fixed bed adsorber. In this study, the adsorption breakthrough of SO2 and NO on Ce/PSAC at different reaction temperatures was manipulated to test their applicability to a model developed by Yoon and Nelson (1984) for breakthrough curves. Yoon and Nelson (1984) developed a relatively simple model addressing the adsorption and breakthrough of adsorbate vapour with respect to activated charcoal. This model was based on the assumption that the rate of decrease in the probability of adsorption for each adsorbate molecule is proportional to the probability of adsorbate adsorption and the probability of adsorbate breakthrough on the adsorbent. A regression analysis (least square method) has been used to give the model parameters of k and t1/2. The results showed that the agreement between the model and the experimental results is satisfactory. From the observation, it is concluded that the simple two-parameter model of Yoon and Nelson’s model can be applied for modelling the breakthrough curves of SO2 and NO gas adsorption over Ce/PSAC.
  2. Sumathi S, Bhatia S, Lee KT, Mohamed AR
    J Hazard Mater, 2010 Apr 15;176(1-3):1093-6.
    PMID: 20018447 DOI: 10.1016/j.jhazmat.2009.11.037
    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2).
  3. Sumathi S, Bhatia S, Lee KT, Mohamed AR
    Bioresour Technol, 2009 Feb;100(4):1614-21.
    PMID: 18952414 DOI: 10.1016/j.biortech.2008.09.020
    Optimizing the production of microporous activated carbon from waste palm shell was done by applying experimental design methodology. The product, palm shell activated carbon was tested for removal of SO2 gas from flue gas. The activated carbon production was mathematically described as a function of parameters such as flow rate, activation time and activation temperature of carbonization. These parameters were modeled using response surface methodology. The experiments were carried out as a central composite design consisting of 32 experiments. Quadratic models were developed for surface area, total pore volume, and microporosity in term of micropore fraction. The models were used to obtain the optimum process condition for the production of microporous palm shell activated carbon useful for SO2 removal. The optimized palm shell activated carbon with surface area of 973 m(2)/g, total pore volume of 0.78 cc/g and micropore fraction of 70.5% showed an excellent agreement with the amount predicted by the statistical analysis. Palm shell activated carbon with higher surface area and microporosity fraction showed good adsorption affinity for SO2 removal.
  4. Ahmad AL, Sumathi S, Hameed BH
    Water Res, 2005 Jul;39(12):2483-94.
    PMID: 15985277
    The adsorption of residue oil from palm oil mill effluent (POME) using chitosan powder and flake has been investigated. POME contains about 2g/l of residue oil, which has to be treated efficiently before it can be discharged. Experiments were carried out as a function of different initial concentrations of residue oil, weight dosage, contact time and pH of chitosan in powder and flake form to obtain the optimum conditions for the adsorption of residue oil from POME. The powder form of chitosan exhibited a greater rate compared to the flake type. The results obtained showed that chitosan powder, at a dosage of 0.5g/l, 15min of contact time and a pH value of 5.0, presented the most suitable conditions for the adsorption of residue oil from POME. The adsorption process performed almost 99% of residue oil removal from POME. Equilibrium studies have been carried out to determine the capacity of chitosan for the adsorption of residue oil from POME using the optimum conditions from the flocculation at different initial concentrations of residue oil. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well with the Freundlich model. The pseudo first- and second-order kinetic models and intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted well with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, i.e. chemisorption between residue oil and chitosan. The significant uptake of residue oil on chitosan was further proved by BET surface area analysis and SEM micrographs.
  5. Lee WPC, Wong FH, Attenborough NK, Kong XY, Tan LL, Sumathi S, et al.
    J Environ Manage, 2017 Jul 15;197:63-69.
    PMID: 28324782 DOI: 10.1016/j.jenvman.2017.03.027
    In the present work, two-dimensional bismuth oxybromide (BiOBr) was synthesized and coupled with co-catalyst molybdenum disulphide (MoS2) via a simple hydrothermal process. The photoactivity of the resulting hybrid photocatalyst (MoS2/BiOBr) was evaluated under the irradiation of 15 W energy-saving light bulb at ambient condition using Reactive Black 5 (RB5) as model dye solution. The photo-degradation of RB5 by BiOBr loaded with 0.2 wt% MoS2 (MoBi-2) exhibited more than 1.4 and 5.0 folds of enhancement over pristine BiOBr and titanium dioxide (Degussa, P25), respectively. The increased photocatalytic performance was a result of an efficient migration of excited electrons from BiOBr to MoS2, prolonging the electron-hole pairs recombination rate. A possible charge transfer diagram of this hybrid composite photocatalyst, and the reaction mechanism for the photodegradation of RB5 were proposed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links