OBJECTIVE: In the present study, BBP was investigated for it's in vivo innate and adaptive immune responses mediated by different humoral and cellular immune factors.
METHODS: Male Balb/c mice were orally fed with BBP (5, 10 and 20 mg/kg) for a period of 14 days and immunized with sheep red blood cells (sRBC) on day 0 for the determination of adaptive responses. The effects of BBP on phagocytosis process of neutrophils isolated from blood of treated/untreated animals were determined. The ceruloplasmin and lysozyme serum levels and myeloperoxidase (MPO) plasma level were also monitored. The mechanism was further explored by assessing its effects on the proliferation of T and B lymphocytes, T-lymphocytes subsets CD4+ and CD8+ and on the secretion of Th1/Th2 cytokines as well as serum immunoglobulins (IgG, IgM) and delayed type hypersensitivity (DTH) reaction.
RESULTS: BBP showed a significant dose-dependent reduction on the migration of neutrophils, Mac-1 expression, phagocytic activity and reactive oxygen species (ROS) production. In comparison to the sensitized control group, a dose-dependent inhibition was observed on lymphocyte proliferation along with the downregulation of effector cells expression and release of cytokines. Moreover, a statistically significant decrease was perceived in serum levels of ceruloplasmin, lysozyme and immunoglobulins and MPO plasma level of BBP-treated mice. BBP also dose-dependently inhibited sheep red blood cells (sRBC)-induced swelling rate of mice paw in DTH.
CONCLUSION: These findings suggest the potential of BBP as a potent immunosuppressive agent.
OBJECTIVES: To describe and summarize the assessment of knowledge and perceptions about CVD risk and preventive approaches among patients with T2DM.
METHODS: A scoping review methodology was adopted, and three scientific databases, Google Scholar, Science Direct, and PubMed were searched using predefined search terms. A multistage screening process that considered relevancy, publication year (2009-2019), English language, and article type (original research) was followed. We formulated research questions focused on the assessment of levels of knowledge and perceptions of the illness relevant to CVD prevention and the identification of associated patients' characteristics.
RESULTS: A total of 16 studies were included. Patients were not confident to identify CVD risk and other clinical consequences that may occur in the prognostic pathway of T2DM. Furthermore, patients were less likely to identify all CV risk factors indicating a lack of understanding of the multi-- factorial contribution of CVD risk. Patients' beliefs about medications were correlated with their level of adherence to medications for CVD prevention. Many knowledge gaps were identified, including the basic disease expectations at the time of diagnosis, identification of individuals' CVD risk factors, and management aspects. Knowledge and perceptions were affected by patients' demographic characteristics, e.g., educational level, race, age, and area of residence.
CONCLUSION: There are knowledge gaps concerning the understanding of CVD risk among patients with T2DM. The findings necessitate educational initiatives to boost CVD prevention among patients with T2DM. Furthermore, these should be individualized based on patients' characteristics, knowledge gaps, disease duration, and estimated CVD risk.
Methods: Three semi-synthetic series of compounds (C1-4, P1-4, and G1-4) were prepared and evaluated biologically as potential dual epidermal growth factor receptor (EGFR) and COX-2 inhibitors. The main phenolic constituents of Amaranthus spinosus L. (p-coumaric, caffeic and gallic) acids have been isolated and subsequently subjected to diazo coupling with various amines to get novel three chemical scaffolds with potential anticancer activities.
Results: Compounds C4 and G4 showed superior inhibitory activity against EGFR (IC50: 0.9 and 0.5 µM, respectively) and displayed good COX-2 inhibition (IC50: 4.35 and 2.47 µM, respectively). Moreover, the final compounds were further evaluated for their cytotoxic activity against human colon cancer (HT-29), pancreatic cancer (PaCa-2), human malignant melanoma (A375), lung cancer (H-460), and pancreatic ductal cancer (Panc-1) cell lines. Interestingly, compounds C4 and G4 exhibited the highest cytotoxic activity with average IC50 values of 1.5 µM and 2.8 µM against H-460 and Panc-1, respectively. The virtual docking study was conducted to gain proper understandings of the plausible-binding modes of target compounds within EGFR and COX-2 binding sites.
Discussion: The NMR of prepared compounds showed characteristic peaks that confirmed the structure of the target compounds. The synthesized benzoxazolyl scaffold containing compounds showed inhibitory activities for both COXs and EGFR which are consistent with the virtual docking study.