Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.
Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.
Mitotic nuclei estimation in breast tumour samples has a prognostic significance in analysing tumour aggressiveness and grading system. The automated assessment of mitotic nuclei is challenging because of their high similarity with non-mitotic nuclei and heteromorphic appearance. In this work, we have proposed a new Deep Convolutional Neural Network (CNN) based Heterogeneous Ensemble technique "DHE-Mit-Classifier" for analysis of mitotic nuclei in breast histopathology images. The proposed technique in the first step detects candidate mitotic patches from the histopathological biopsy regions, whereas, in the second step, these patches are classified into mitotic and non-mitotic nuclei using the proposed DHE-Mit-Classifier. For the development of a heterogeneous ensemble, five different deep CNNs are designed and used as base-classifiers. These deep CNNs have varying architectural designs to capture the structural, textural, and morphological properties of the mitotic nuclei. The developed base-classifiers exploit different ideas, including (i) region homogeneity and feature invariance, (ii) asymmetric split-transform-merge, (iii) dilated convolution based multi-scale transformation, (iv) spatial and channel attention, and (v) residual learning. Multi-layer-perceptron is used as a meta-classifier to develop a robust and accurate classifier for providing the final decision. The performance of the proposed ensemble "DHE-Mit-Classifier" is evaluated against state-of-the-art CNNs. The performance evaluation on the test set suggests the superiority of the proposed ensemble with an F-score (0.77), recall (0.71), precision (0.83), and area under the precision-recall curve (0.80). The good generalisation of the proposed ensemble with a considerably high F-score and precision suggests its potential use in the development of an assistance tool for pathologists.
The effect of physicochemical treatment on pectin yield, degree of esterification, along with the kinetics and thermodynamics characteristics was investigated in the present study. Several extraction parameters were observed to have impacted the yield and degree of esterification significantly, and the best extraction condition was as follows: agitation rate of 250 rpm, temperature of 70 °C, extraction time of 120 min, pH 2, and liquid to solid ratio of 10 v/w which has resulted in 28.20% of pectin yield, with DE (degree of esterification) of 57.00%. A theoretical model which describes the extractability, dissolution and degradation rate of pectin to predict the maximal yield at the maximal time was established to study the extraction kinetics of pectin from HPP. The kinetic analysis from Panchev's model shows the extraction rate was found highest at LSR 10 with ymax 30.85%. The calculated activation energy for pectin dissolution and degradation was found to be 4.532 kJ/mol and 28.054 kJ/mol, respectively. The thermodynamic study has suggested that the process was endothermic, spontaneous and reversible. These results suggest that the physical and chemical treatment applied could be an efficient technique for the extraction of pectin from Hylocereus polyrhizus peels.
Hepatitis B virus (HBV) is a noncytopathic virus and billions of HBV-infected patients live uneventful lives and do not suffer from notable liver damage. However, HBV also causes progressive liver diseases characterized by hepatic inflammation, hepatic fibrosis, and liver cancer in millions of HBV-infected patients. The goal of this study was to evaluate the role of mutant HBV in HBV pathogenesis. In a cohort of 360 chronic HBV-infected patients, mutations at T1762/A1764 of HBV genome were detected in most of the patients with HBV-induced liver cirrhosis and hepatocellular carcinoma. To explore if mutations at T1762/A1764 of HBV genome has any role in progressive liver disease, peripheral blood mononuclear cells (PBMCs) and antigen-presenting dendritic cells (DCs) were isolated from five chronic hepatitis B (CHB) patients with mutations at T1762/A1764 and five comparable patients of CHB without mutations at T1762/A1764. DCs were pulsed with hepatitis B surface antigen (HBsAg). The levels of cytokines produced by PBMCs and DCs as well as nitrite production by DCs were evaluated. Significantly higher levels of interleukin-12, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta were detected in cultures of PBMCs, DCs, and HBsAg-pulsed DCs from CHB patients with mutations at T1762/A1764 compared with those without mutations (p
There has been an increase in plastic production during the past decades, yet the recycling of plastic remains relatively low. Incorporating plastic in concrete can mitigate environmental pollution. The use of waste polyethylene terephthalate (PET) bottles as an aggregate weakens properties of concrete. An alternative is to use PET bottles as a binder in the mortar. The PET binder mixed with sand results in weak mortar. Marble and iron slag can enhance PET mortar properties by preventing alkali reactions. This study examines the mechanical and durability properties of PET mortar with different mixes. The mixes were prepared as plastic and marble (PM); plastic and iron slag (PI); plastic, sand, and marble (PSM); plastic, iron slag, and marble (PIM); and plastic, sand, and iron slag (PSI). PM with 30-45% plastic content had increased compressive and flexural strength up to 35.73% and 20.21%, respectively. PI with 30-35% plastic content showed strength improvements up to 29.19% and 5.02%, respectively. However, at 45% plastic content, strength decreased by 8.8% and 27.90%. PSM, PIM, and PSI specimens had nearly double the strength of ordinary Portland cement (OPC) mortar. The durability of PET mortar in chemical solutions, mainly 5% HCl and 20% NaOH, indicate that mass decreased after 3, 7, and 28 days. All specimens showed good resistance to HCl and NaCl solutions compared to OPC mortar. However, its resistance to NaOH is low compared to OPC mortar. PET mortar without cement showed higher strength and durability than cement mortar, making it suitable for paver tiles, drainage systems, and roads.
The direct cytopathic effects of the hepatitis B virus (HBV) on subsequent liver damage are not fully understood in HBV-infected patients. However, associations between the prevalence of various HBV genotypes and the extent of liver damage have been reported from different parts of the world. The purpose of this study was to determine the distribution of HBV genotypes in patients with chronic HBV infection in Bangladesh, a country of 160 million people, of which approximately 3-6 million are chronically infected HBV patients. In addition, whole and partial genome sequencing of HBV was performed to evaluate the relationship between HBV mutations and genotypes. We found that 42% of the patients with low HBV DNA and normal levels of alanine aminotransferase (ALT) had HBV genotype D. In contrast, the HBV genotype C was dominant among patients with high HBV DNA levels (>2000 IU/ml) and elevated ALT and in patients with liver cirrhosis (LC) and hepatocellular carcinomas (HCC). Whole and partial genome sequences of HBV revealed that most patients with LC and HCC had HBV genotype C with mutations at the T1762/A1764 positions. It seems that Bangladesh represents a borderline country, situated within East Asia, which mainly consists of individuals with HBV genotypes B and C, whereas in the western parts of Asia, HBV genotypes A and D are prevalent. Bangladesh is, therefore, an excellent model for the comparison of the pathophysiology of three major HBV genotypes in a single population. The findings of this study suggest a possible association between HBV viral factors and the extent of liver damage in chronic HBV-infected patients.
Background: Hepatitis B virus (HBV) infection has many faces. Precore and core promoter mutants resemble inactive carrier status. The identification of hepatitis B core antigen (HBcAg) in hepatocytes may have variable clinical significance. The present study was undertaken to detect HBcAg in chronic hepatitis B (CHB) patients and to assess the efficacy of detection system by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP).
Materials and methods: The study was done in 70 chronic HBV-infected patients. Out of 70 patients, eight (11.4%) were hepatitis B e antigen (HBeAg) positive and 62 (88.57%) were HBeAg negative. Hepatitis B core antigen was detected by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP) methods in liver tissue.
Results: All HBeAg positive patients expressed HBcAg by both IIF and IIP methods. Out of 62 patients with HBeAg-negative CHB, HBcAg was detected by IIF in 55 (88.7%) patients and by IIP in 51 (82.26%) patients. A positive relation among viral load and HBcAg detection was also found. This was more evident in the case of HBeAg negative patients and showed a positive relation with HBV DNA levels.
Conclusion: Hepatitis B core antigen can be detected using the IIF from formalin fixed paraffin block preparation and also by IIP method. This seems to reflect the magnitudes of HBV replication in CHB.
How to cite this article: Raihan R, Tabassum S, Al-Mahtab M, Nessa A, Jahan M, Kabir CMS, Kamal M, Aguilar JC. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method. Euroasian J Hepato-Gastroenterol 2015;5(1):7-10.
The Guerouaou aquifer investigation spanning 280 km2 in Ain Zohra yields promising outcomes, instilling optimism for regional water quality. These analyses were applied to 45 sampling instances from 43 wells, enabling a comprehensive water quality assessment. Groundwater conductivity ranged from medium to high, peaking at 18360 ms/cm2. The conductivity reveals insights about the groundwater's mineralization. Key physiochemical parameters fell within desirable thresholds, bolstering the positive perspective. HCO3- levels spanned 82-420 mg/L, while chloride content ranged from 38 to 5316 mg/L, benefiting water quality. NO3- ions, vital for gauging pollution, ranged from 0 to 260 mg/L, indicating favorable results. Cation concentrations exhibited encouraging variations: Ca2+- 24 to 647 mg/L, Mg2+- 12 to 440 mg/L, Na+- 18 to 2722 mg/L, K+- 1.75 to 28.65 mg/L. These collectively favor water quality. Halite breakdown dominated mineralization, as evidenced by the prevalence of Na-Cl-Na-SO4 facies. Water resource management and local communities need effective management and mitigation strategies to prevent saltwater intrusion.