Displaying all 18 publications

Abstract:
Sort:
  1. Zulfikri N, Selvanayagam VS, Yusof A
    J Sport Rehabil, 2021 Jan 19;30(5):717-724.
    PMID: 33465761 DOI: 10.1123/jsr.2019-0483
    CONTEXT: Badminton continues to be a highly competitive sport where training is introduced at an early age and load has intensified. This exposes players to a greater risk of injuries, in particular when assessing related training outcomes such as strength, agonist-antagonist ratio, and bilateral deficit among adolescents where age- and sex-associated growth and development should be considered.

    OBJECTIVE: To evaluate strength profile of the upper and lower limbs among adolescent elite Malaysian badminton players.

    DESIGN: Cross-sectional study.

    SETTING: Laboratory.

    PARTICIPANTS: Forty-eight asymptomatic athletes (24 males and 24 females) were grouped into early and late adolescence (13-14 y old and 15-17 y old, respectively).

    MAIN OUTCOME MEASURE(S): Strength (absolute and normalized) of the external/internal rotators of the shoulder and flexor/extensor of the knee and strength derivatives, conventional strength ratio (CSR), dynamic control ratio (DCR), and bilateral deficits were measured.

    RESULTS: Males showed greater strength in all strength indices (P < .05). The older group had greater strength compared to younger for most of the upper and lower limb indices (P < .05); these effects diminished when using normalized data. For females, there was no age group effect in the shoulder and knee strength. All players displayed lower shoulder and knee normative values for CSR and DCR. Dominant and non-dominant knee strength were comparable between sex and age groups.

    CONCLUSIONS: For males, growth and maturation had a greater contribution to strength gained compared to training, whereas for females, growth, maturation, and training did not improve strength. The normalized data indicated that training did not improve all indices measured apart from external rotator strength in females. All players also displayed lower normative values of CSR and DCR. These results suggest that training in elite adolescent Malaysian badminton players lacks consideration of strength gain and injury risk factors.

  2. Selvanayagam VS, Riek S, DE Rugy A, Carroll TJ
    Med Sci Sports Exerc, 2016 09;48(9):1835-46.
    PMID: 27116648 DOI: 10.1249/MSS.0000000000000956
    PURPOSE: Goal-directed movements tend to resemble the characteristics of previously executed actions. Here we investigated whether a single bout of strength training, which typically involves stereotyped actions requiring strong neural drive, can bias subsequent aiming behavior toward the direction of trained forces.

    METHODS: In experiment 1 (n = 10), we tested the direction of force exerted in an isometric aiming task before and after 40 repetitions of 2-s maximal-force ballistic contractions toward a single directional target. In experiment 2 (n = 12), each participant completed three training conditions in a counterbalanced crossover design. In two conditions, both the aiming task and the training were conducted in the same (neutral) forearm posture. In one of these conditions, the training involved weak forces to determine whether the level of neural drive during training influences the degree of bias. In the third condition, high-force training contractions were performed in a 90° pronated forearm posture, whereas the low-force aiming task was performed in a neutral forearm posture. This dissociated the extrinsic training direction from the pulling direction of the trained muscles during the aiming task.

    RESULTS: In experiment 1, we found that aiming direction was biased toward the training direction across a large area of the work space (approximately ±135°; tested for 16 targets spaced 22.5° apart), whereas in experiment 2, we found systematic bias in aiming toward the training direction defined in extrinsic space, but only immediately after high-force contractions.

    CONCLUSION: Our findings suggest that bias effects of training involving strong neural drive generalize broadly to untrained movement directions and are expressed according to extrinsic rather than muscle-based coordinates.

  3. Khong TK, Selvanayagam VS, Hamzah SH, Yusof A
    J Appl Physiol (1985), 2018 10 01;125(4):1021-1029.
    PMID: 29975601 DOI: 10.1152/japplphysiol.00221.2018
    Both the quantity and quality of pre-exercise carbohydrate (CHO) meals have been shown to improve endurance performance. However, their role in attenuating central fatigue (CF) is inconclusive. The use of neurophysiological techniques, such as voluntary activation (VA) and the central activation ratio (CAR), alongside maximum voluntary contraction (MVC) and sustained MVC (sMVC) can provide information on CF. Hence, the objective of this study was to investigate the effects of isocaloric pre-exercise meals: 1) a high versus low quantity of CHO and 2) a high quantity of CHO with a high versus low glycemic index (GI) on MVC, VA, and CAR following a 90-min run. The high and low quantity of CHO was 1.5 and 0.8 g/kg body wt, respectively, and high and low GI was ~75 and ~40, respectively. Blood insulin, serotonin, tryptophan, and gaseous exchange were also measured. High CHO preserved sMVC, VA, CAR, and serotonin postrunning with greater CHO oxidation and insulin response, whereas in low CHO, greater reductions in sMVC, VA, and CAR were accompanied by higher serotonin and fat oxidation with lower insulin response. These observations indicate central involvements. Meanwhile, high GI CHO better preserved force (sMVC), CAR, and tryptophan with greater CHO oxidation and insulin response compared with low GI. The findings of this study suggest that pre-exercise meals with varying quantity and quality of CHO can have an effect on CF, where greater CHO oxidation and insulin response found in both high CHO and high GI lead to attenuation of CF. NEW & NOTEWORTHY This paper examined the effects of carbohydrate interventions (high and low: quantity and quality wise) on central activity during prolonged exercise using mainly neurophysiological techniques along with gaseous exchange and blood insulin, serotonin, and tryptophan data.
  4. Curren E, Kuwahara VS, Yoshida T, Leong SCY
    Environ Pollut, 2021 Nov 01;288:117776.
    PMID: 34280748 DOI: 10.1016/j.envpol.2021.117776
    Microplastic pollution is a prevalent and serious problem in marine environments. These particles have a detrimental impact on marine ecosystems. They are harmful to marine organisms and are known to be a habitat for toxic microorganisms. Marine microplastics have been identified in beach sand, the seafloor and also in marine biota. Although research investigating the presence of microplastics in various marine environments have increased across the years, studies in Southeast Asia are still relatively limited. In this paper, 36 studies on marine microplastic pollution in Southeast Asia were reviewed and discussed, focusing on microplastics in beach and benthic sediments, seawater and marine organisms. These studies have shown that the presence of fishing harbours, aquaculture farms, and tourism result in an increased abundance of microplastics. The illegal and improper disposal of waste from village settlements and factories also contribute to the high abundance of microplastics observed. Hence, it is crucial to identify the hotspots of microplastic pollution, for assessment and mitigation purposes. Future studies should aim to standardize protocols and quantification, to allow for better quantification and assessment of the levels of microplastic contamination for monitoring purposes.
  5. Curren E, Kuwahara VS, Yoshida T, Leong SCY
    Funct Integr Genomics, 2024 Mar 02;24(2):46.
    PMID: 38429576 DOI: 10.1007/s10142-024-01328-9
    Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.
  6. Tan SH, Khong TK, Selvanayagam VS, Yusof A
    Eur J Appl Physiol, 2024 Feb;124(2):403-415.
    PMID: 38038740 DOI: 10.1007/s00421-023-05350-w
    Rinsing the mouth with a carbohydrate (CHO) solution has been shown to enhance exercise performance while reducing neuromuscular fatigue. This effect is thought to be mediated through the stimulation of oral receptors, which activate brain areas associated with reward, motivation, and motor control. Consequently, corticomotor responsiveness is increased, leading to sustained levels of neuromuscular activity prior to fatigue. In the context of endurance performance, the evidence regarding the central involvement of mouth rinse (MR) in performance improvement is not conclusive. Peripheral mechanisms should not be disregarded, particularly considering factors such as low exercise volume, the participant's fasting state, and the frequency of rinsing. These factors may influence central activations. On the other hand, for strength-related activities, changes in motor evoked potential (MEP) and electromyography (EMG) have been observed, indicating increased corticospinal responsiveness and neuromuscular drive during isometric and isokinetic contractions in both fresh and fatigued muscles. However, it is important to note that in many studies, MEP data were not normalised, making it difficult to exclude peripheral contributions. Voluntary activation (VA), another central measure, often exhibits a lack of changes, mainly due to its high variability, particularly in fatigued muscles. Based on the evidence, MR can attenuate neuromuscular fatigue and improve endurance and strength performance via similar underlying mechanisms. However, the evidence supporting central contribution is weak due to the lack of neurophysiological measures, inaccurate data treatment (normalisation), limited generalisation between exercise modes, methodological biases (ignoring peripheral contribution), and high measurement variability.Trial registration: PROSPERO ID: CRD42021261714.
  7. Waller S, Ong TL, Ibrahim KA, Abdul-Aziz Z, Mahant N, Fung VSC
    J Clin Neurosci, 2021 May;87:165-167.
    PMID: 33707108 DOI: 10.1016/j.jocn.2020.11.028
  8. Mohd Jamali MNZ, Selvanayagam VS, A Hamid MS, Yusof A
    Phys Sportsmed, 2021 Jun 09.
    PMID: 33993831 DOI: 10.1080/00913847.2021.1930241
    Objectives: This study aimed to determine and compare the prevalence, patterns and factors associated with injury between elite Malaysian able-bodied and para-badminton players.Methods: Medical records from July 2007 to December 2017 were reviewed.Results: Among 209 able-bodied players, 1010 injuries were reported. The injuries affected the lower limb (67.2%), sustained during training (94.2%), overuse in nature (38.7%), and involving mostly junior players (62.4%). The injury rate was 94/year, lower than previously reported. Patellar tendinopathy and muscle strain to the upper limb and torso were the commonest. Age, sex and history of injury were predictors of injury. Lower limb injury was a predictor of upper limb and torso injuries, while history of injury to the upper limb and/or torso was a predictor of lower limb injury. Meanwhile, among 18 para-badminton players, 62 injuries were reported from July 2014 to December 2017, which involved the lower limb (45.2%), sustained during training (87.1%), overuse in nature (54.8%), and involved mostly standing-class players (77.8%). The injury rate was 10/year. Patellar tendinopathy, rotator cuff tendinopathy and back muscle strain were the commonest. The patterns of injury (site, occasion and nature) were similar between groups, except for the shoulder where nature was overuse in para-badminton players compared to acute in able-bodied players.Conclusions: All players are susceptible to training-related injuries, particularly to the lower limb. Over the last decade, an increase in the injury index for the lower limb and a shift from chronic to acute for the upper limb were observed among able-bodied players. Age, sex and history of injury expose able-bodied players to greater risk. Meanwhile, for para-badminton players, overuse shoulder and knee injuries are commonest. These findings necessitate a comprehensive injury prevention program that encompasses all body regions with an emphasis on the lower limb among elite Malaysian able-bodied and para-badminton players.
  9. Tang CN, Kuwahara VS, Leong SCY, Moh PY, Yoshida T
    Mar Pollut Bull, 2023 Aug;193:115182.
    PMID: 37352797 DOI: 10.1016/j.marpolbul.2023.115182
    Plankton seasonality in tropical coastal waters is becoming more apparent as a result of monsoon-driven changes in environmental conditions, but research on the monsoonal variation of microplastics (MP) is still limited. We examined the monsoonal variation of MP in the water column and their ingestion by zooplankton in Sepanggar Bay, Sabah, Malaysia. MP concentrations were significantly higher during the Southwest monsoon whereas MP ingestions showed no monsoonal difference across major zooplankton taxa. Canonical Correspondence Analysis (CCA) and Generalized Additive Models (GAM) indicate that MP concentrations were driven by changes in rainfall and salinity while MP bioavailability to zooplankton was consistent regardless of monsoon. MP ingestion increased progressively up the planktonic food chain, and bioavailability of fibers and small-sized MP of high-density polymers to zooplankton was proportionately higher. Distinct changes in the MP concentration relative to the monsoons provide new insights into the seasonal variation of MP in tropical coastal ecosystems.
  10. Arumugam K, Ahmad MF, Yaacob NS, Ikram WM, Maniyam MN, Abdullah H, et al.
    Heliyon, 2020 Jul;6(7):e04556.
    PMID: 32775725 DOI: 10.1016/j.heliyon.2020.e04556
    Natural growth-promoting nutrients extracted from aquaculture sludge waste can be used to maximise microalgal growth. This study identified the influence of aquaculture sludge extract (SE) on four microalgae species. Conway or Bold's Basal Media (BBM) was supplemented with SE collected from a Sabak Bernam shrimp pond (SB) and Kota Puteri fish pond (KP), and tested using a novel microplate-incubation technique. Five different autoclave extraction treatment parameters were assessed for both collected SE, i.e., 1-h at 105 °C, 2-h at 105 °C, 1-h at 121 °C, 2-h at 121 °C, and 24-h at room temperature (natural extraction). Microalgae culture in the microplates containing control (media) and enriched (media + SE) samples were incubated for nine days, at 25 °C with the light intensity of 33.75 μmol photons m-2 s-1 at 12-h light/dark cycle. The total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP) in KP SE were 44.0-82.0 mg L-1 and 0.96-8.60 mg L-1. TDN (8.0%-515.0%) and TDP (105%-186 %) were relatively higher in KP SE compared to SB SE. The growth of microalgae species Nannochloropsis ocenica showed significant differences (p < 0.05) between the five extraction treatments from SB and the control. However, Chlorella vulgaris, Neochloris conjuncta, and Nephroclamys subsolitaria showed no significant differences (p > 0.05) in SB SE. N. ocenica, C. vulgaris, and N. conjuncta showed significant differences (p < 0.05) between five extraction treatments from KP and the control while N. subsolitaria showed no significant difference (p > 0.05). The specific growth rate (SGR) in the exponential phase of all microalgae species were relatively higher in SB SE compared to KP SE. While the organic matter content of KP SE was relatively higher, there were no significant differences in microalgae growth compared to SB SE. Nonetheless, modified SE did influence microalgae growth compared to the control. This study shows that modified SE could be used as enrichment media for microalgae cultivation.
  11. Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Islam MA, Kean VS, et al.
    Med Eng Phys, 2016 Aug;38(8):767-75.
    PMID: 27289541 DOI: 10.1016/j.medengphy.2016.05.012
    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population.
  12. Morozova OV, Manuvera VA, Barinov NA, Subcheva EN, Laktyushkin VS, Ivanov DA, et al.
    Arch Biochem Biophys, 2024 Feb;752:109843.
    PMID: 38072298 DOI: 10.1016/j.abb.2023.109843
    Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for β-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.
  13. Yaacob NS, Ahmad MF, Kawasaki N, Maniyam MN, Abdullah H, Hashim EF, et al.
    Molecules, 2021 Jan 27;26(3).
    PMID: 33513787 DOI: 10.3390/molecules26030653
    Soil extracts are useful nutrients to enhance the growth of microalgae. Therefore, the present study attempts for the use of virgin soils from Peninsular Malaysia as growth enhancer. Soils collected from Raja Musa Forest Reserve (RMFR) and Ayer Hitam Forest Reserve (AHFR) were treated using different extraction methods. The total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and dissolved organic carbon (DOC) concentrations in the autoclave methods were relatively higher than natural extraction with up to 132.0 mg N/L, 10.7 mg P/L, and 2629 mg C/L, respectively for RMFR. The results of TDN, TDP, and DOC suggested that the best extraction methods are autoclaved at 121 °C twice with increasing 87%, 84%, and 95%, respectively. Chlorella vulgaris TRG 4C dominated the growth at 121 °C twice extraction method in the RMRF and AHRF samples, with increasing 54.3% and 14%, respectively. The specific growth rate (µ) of both microalgae were relatively higher, 0.23 d-1 in the Ayer Hitam Soil. This extract served well as a microalgal growth promoter, reducing the cost and the needs for synthetic medium. Mass production of microalgae as aquatic feed will be attempted eventually. The high recovery rate of nutrients has a huge potential to serve as a growth promoter for microalgae.
  14. Wan Mohd Zamri WMI, Sjahrir F, Yaacob NS, Dzulkafli NF, Ahmad MF, Abdullah H, et al.
    Molecules, 2021 Apr 23;26(9).
    PMID: 33922872 DOI: 10.3390/molecules26092480
    The assessment of water-extractable organic matter using an autoclave can provide useful information on physical, chemical, and biological changes within the soil. The present study used virgin forest soils from Chini Forest Reserve, Langkawi Island, and Kenyir Forest Reserve (Malaysia), extracted using different extraction methods. The dissolved organic carbon (DOC), total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and ammonium-nitrate content were higher in the autoclave treatments, up to 3.0, 1.3, 1.2, and 1.4 times more than by natural extraction (extracted for 24 h at room temperature). Overall, the highest extractable DOC, TDN, TDP, ammonium and nitrate could be seen under autoclaved conditions 121 °C 2×, up to 146.74 mg C/L, 8.97 mg N/L, 0.23 mg P/L, 5.43 mg N mg/L and 3.47 N mg/L, respectively. The soil extracts became slightly acidic with a higher temperature and longer duration. Similar trends were observed in the humic and nonhumic substances, where different types of soil extract treatments influenced the concentrations of the fractions. Different soil extraction methods can provide further details, thus widening the application of soil extracts, especially in microbes.
  15. Ahmad MF, Abdullah H, Hassan MN, Jamaludin MI, Sivam A, Komatsu K, et al.
    Int J Mol Sci, 2023 Jan 03;24(1).
    PMID: 36614337 DOI: 10.3390/ijms24010872
    Soil ecosystems are home to a diverse range of microorganisms, but they are only partially understood because no single-cell sequencing or whole-community sequencing provides a complete picture of these complex communities. Using one of such metagenomics approaches, we succeeded in monitoring the microbial diversity and stress-response gene in the soil samples. This study aims to test whether known differences in taxonomic diversity and composition are reflected in functional gene profiles by implementing whole gene sequencing (WGS) metagenomic analysis of geographically dispersed soils from two distinct pristine forests. The study was commenced by sequencing three rainforest soil samples and three peat swamp soil samples. Soil richness effects were assessed by exploring the changes in specific functional gene abundances to elucidate physiological constraints acting on different soil systems and identify variance in functional pathways relevant to soil biogeochemical cycling. Proteobacteria shows abundances of microbial diversity for 52.15% in Royal Belum Reserved Forest and 48.28% in Raja Musa; 177 out of 1,391,841 and 449 out of 3,586,577 protein coding represent acidic stress-response genes for Royal Belum and Raja Musa, respectively. Raja Musa indicates pH 2.5, which is extremely acidic. The analysis of the taxonomic community showed that Royal Belum soils are dominated by bacteria (98% in Sungai Kooi (SK), 98% in Sungai Papan (SP), and 98% in Sungai Ruok (SR), Archaea (0.9% in SK, 0.9% in SP, and 1% in SR), and the remaining were classed under Eukaryota and viruses. Likewise, the soils of Raja Muda Musa are also dominated by bacteria (95% in Raja Musa 1 (RM1), 98% in Raja Musa 2 (RM2), and 96% in Raja Musa 3 (RM3)), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3), and the remaining were classed under Eukaryota and viruses. This study revealed that RBFR (Royal Belum Foresr Reserve) and RMFR (Raja Musa Forest Reserve) metagenomes contained abundant stress-related genes assigned to various stress-response pathways, many of which did not show any difference among samples from both sites. Our findings indicate that the structure and functional potential of the microbial community will be altered by future environmental potential as the first glimpse of both the taxonomic and functional composition of soil microbial communities.
  16. Short FT, Coles R, Fortes MD, Victor S, Salik M, Isnain I, et al.
    Mar Pollut Bull, 2014 Jun 30;83(2):408-16.
    PMID: 24746094 DOI: 10.1016/j.marpolbul.2014.03.036
    Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures.
  17. Cardoso F, Goetz CG, Mestre TA, Sampaio C, Adler CH, Berg D, et al.
    Mov Disord, 2024 Feb;39(2):259-266.
    PMID: 38093469 DOI: 10.1002/mds.29683
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links