Displaying all 15 publications

Abstract:
Sort:
  1. Liu X, Hayashi F, Yang D
    Zootaxa, 2013;3620:501-17.
    PMID: 26120721
    A dobsonfly species group, the Protohermes dichrous group, endemic to Borneo, is characterized by the straight directed male ninth gonostylus with a narrow base and the elongate male ectoproct. Protohermes goodgeri sp. nov. and P. karubei sp. nov. from northern Borneo (eastern Malaysia) are herein described as new species placed in the P. dichrous group.
  2. Yang D, Lee YY, Lu Y, Wang Y, Zhang Z
    Molecules, 2024 Apr 18;29(8).
    PMID: 38675667 DOI: 10.3390/molecules29081847
    The process of lipid crystallization influences the characteristics of lipid. By changing the chemical composition of the lipid system, the crystallization behavior could be controlled. This review elucidates the internal factors affecting lipid crystallization, including triacylglycerol (TAG) structure, TAG composition, and minor components. The influence of these factors on the TAG crystal polymorphic form, nanostructure, microstructure, and physical properties is discussed. The interplay of these factors collectively influences crystallization across various scales. Variations in fatty acid chain length, double bonds, and branching, along with their arrangement on the glycerol backbone, dictate molecular interactions within and between TAG molecules. High-melting-point TAG dominates crystallization, while liquid oil hinders the process but facilitates polymorphic transitions. Unique molecular interactions arise from specific TAG combinations, yielding molecular compounds with distinctive properties. Nanoscale crystallization is significantly impacted by liquid oil and minor components. The interaction between the TAG and minor components determines the influence of minor components on the crystallization process. In addition, future perspectives on better design and control of lipid crystallization are also presented.
  3. Liu Y, Dong M, Jia Y, Yang D, Hui Y, Yang X
    Pathol Res Pract, 2024 Oct;262:155544.
    PMID: 39197215 DOI: 10.1016/j.prp.2024.155544
    BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks the expression of three receptors commonly targeted in breast cancer treatment. In this study, the research focused on investigating the role of centrosomal protein 55 (CEP55) in TNBC progression and its interaction with the transcription factor Spi-1 proto-oncogene (SPI1).

    METHODS: Various techniques including qRT-PCR, western blotting, and immunohistochemistry assays were utilized to examine gene expression patterns. Functional assays such as wound-healing assay, transwell invasion assay, 5-Ethynyl-2'-deoxyuridine assay, and metabolic assays were conducted to assess the impact of CEP55 on the behaviors of TNBC cells. CD163-positive macrophages were quantified by flow cytometry. The chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to assess the association of SPI1 with CEP55. A xenograft mouse model experiment was used to analyze the impact of SPI1 on tumor development in vivo.

    RESULTS: CEP55 and SPI1 expression levels were significantly upregulated in TNBC tissues and cells. The depletion of CEP55 led to decreased TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization, indicating its crucial role in promoting TNBC progression. Moreover, SPI1 transcriptionally activated CEP55 in TNBC cells, and its overexpression was associated with accelerated tumor growth in vivo. Further, CEP55 overexpression relieved SPI1 silencing-induced inhibitory effects on TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization.

    CONCLUSION: SPI1-mediated transcriptional activation of CEP55 plays a key role in enhancing TNBC cell migration, invasion, proliferation, glucose metabolism, and M2 macrophage polarization. These insights provide valuable information for potential targeted therapies to combat TNBC progression by modulating the SPI1-CEP55 axis.

  4. Zhong L, Liu Q, Ting YS, Thien VY, Binti Kalong NS, Yang D, et al.
    Chem Biol Drug Des, 2018 12;92(6):1998-2008.
    PMID: 30043441 DOI: 10.1111/cbdd.13371
    Overexpression of thioredoxin-interacting protein (TXNIP) is associated with reduced insulin sensitivity and β-cell apoptosis. We have previously shown that W2476 inhibited high glucose-induced TXNIP expression at both mRNA and protein levels in INS-1E cells. In this study, we describe structural modification and optimization of W2476 leading to three more active derivatives, 8d, 8g, and 9h, capable of suppressing TXNIP expression in BG73 and INS-1E cells, increasing insulin production, and reducing high glucose-induced apoptosis in INS-1E cells.
  5. Yang F, Guo KX, Yang DQ, Liu RD, Long SR, Zhang X, et al.
    Trop Biomed, 2020 Jun 01;37(2):458-470.
    PMID: 33612815
    A T. spiralis serine protease 1.2 (TsSP1.2) was identified in the muscle larvae (ML) and intestinal larvae surface/excretory-secretory (ES) proteins by immunoproteomics. The aim of this study was to determine the TsSP1.2 function in the process of T. spiralis intrusion, growth and reproduction by using RNA interference (RNAi). RNAi was used to silence the expression of TsSP1.2 mRNA and protein in the nematode. On 2 days after the ML were electroporated with 2 µM of TsSP1.2-specific siRNA 534, TsSP1.2 mRNA and protein expression declined in 56.44 and 84.48%, respectively, compared with untreated ML. Although TsSP1.2 silencing did not impair worm viability, larval intrusion of intestinal epithelium cells (IEC) was suppressed by 57.18% (P < 0.01) and the suppression was siRNA-dose dependent (r = 0.976). Infection of mice with siRNA 534 transfected ML produced a 57.16% reduction of enteral adult burden and 71.46% reduction of muscle larva burden (P < 0.05). Moreover, silencing of TsSP1.2 gene in ML resulted in worm development impediment and reduction of female fertility. The results showed that silencing of TsSP1.2 by RNAi inhibited larval intrusion and development, and reduced female fecundity. TsSP1.2 plays a crucial role for worm invasion and development in T. spiralis life cycle, and is a potential vaccine/drug target against Trichinella infection.
  6. Yang DQ, Zeng Y, Sun XY, Yue X, Hu CX, Jiang P, et al.
    Trop Biomed, 2020 Dec 01;37(4):932-946.
    PMID: 33612747 DOI: 10.47665/tb.37.4.932
    In previous studies, a Trichinella spiralis serine protease (TsSP) was identified in excretion/secretion (ES) products from intestinal infective L1 larvae (IIL1) using immunoproteomics. The complete cDNA sequence of TsSP gene was 1372 bp, which encoded 429 amino acids with 47.55 kDa. The TsSP was transcribed and expressed at all T. spiralis life cycle phases, as well as mainly located at the cuticle and stichosome of the parasitic nematode. Recombinant TsSP bind to intestinal epithelial cells (IEC) and promoted larva invasion, however, its exact function in invasion, development and reproduction are still unknown. The aim of this study was to confirm the biological function of TsSP during T. spiralis invasion and growth using RNA interference (RNAi) technology. The results showed that on 1 day after electroporation using 2.5 µM siRNA156, TsSP mRNA and protein expression of muscle larvae (ML) was suppressed by 48.35 and 59.98%, respectively. Meanwhile, silencing of TsSP gene by RNAi resulted in a 61.38% decrease of serine protease activity of ML ES proteins, and a significant reduction of the in vitro and in vivo invasive capacity of IIL1 to intrude into the IEC monolayer and intestinal mucosa. When mice were infected with siRNA 156-transfected larvae, adult worm and muscle larva burdens were decreased by 58.85 and 60.48%, respectively. Moreover, intestinal worm growth and female fecundity were evidently inhibited after TsSP gene was knockdown, it was demonstrated that intestinal adults became smaller and the in vitro newborn larval yield of females obviously declined compared with the control siRNA group. The results indicated that knockdown of TsSP gene by RNAi significantly reduced the TsSP expression and enzymatic activity, impaired larvae intrusion and growth, and lowered the female reproductive capacity, further verified that TsSP might participate in diverse processes of T. spiralis life cycle, it will be a new prospective candidate molecular target of anti-Trichinella vaccines.
  7. Du C, Yang D, Jiang S, Zhang J, Gao H, Ye Y, et al.
    Plant Dis, 2023 Nov 03.
    PMID: 37923973 DOI: 10.1094/PDIS-09-23-1841-PDN
    Syzygium grijsii is an evergreen shrub belonging to the family Myrtaceae, and widely cultivated in southern China as an ornamental medicinal plant. In May 2022, anthracnose symptoms were observed on leaves of S. grijsii planted in a nursery (N22°55'46″, E108°22'11″) in Nanning, Guangxi Province, China. More than 30% of leaves were infected. Initially, irregular brown spots (1 to 2 mm in diameter) formed on the leaves, with a slight depression in the center, then expanded into large, dark-brown lesions. In severe infections, lesions coalesced and covered the entire leaf, causing wilt and fall off the plant. To identify the pathogen, 30 diseased leaves were collected from five plants. Leaf tissues (5 × 5 mm) were cut from the infected margins, surface sterilized (75% ethanol 10 s, 2% NaClO 5 min, rinsed three times with sterile water), then placed on potato dextrose agar (PDA), and incubated at 28℃ in darkness. After 5 days, 16 fungal isolates with similar morphology were obtained from 30 plated tissues. Colonies on PDA were abundant with grayish-white fluffy mycelia, and yellowish-white on the back. Conidia were one-celled, hyaline, smooth-walled, cylindrical with narrowing at the center, blunt at the ends, and ranged from 11.35 to 22.14 × 4.88 to 7.67 μm (n=100). Morphological characteristics of the isolates were similar to the descriptions of Colletotrichum sp. (Prihastuti et al. 2009). Five representative isolates (Cs34, Cs31, Cs32, Cs33 and Cs35), which were preserved in the Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, were selected for molecular identification. The ITS (Nos. OQ618199, OR539576 to OR539579), TUB2 (Nos. OQ630972, OR545076 to OR545079), ACT (Nos. OQ685919, OR545060 to OR545063), CHS-1 (Nos. OQ685917, OR545068 to OR545071), GAPDH (Nos. OQ685916, OR545072 to OR545075), and CAL (Nos. OQ685918, OR545064 to OR545067) sequences showed >99% identity to those of Colletotrichum siamense ex-type culture ICPM 18578 (Nos. JX010171, JX009924, JX009714 and JX009518) and strain C1315.2 (Nos. JX009865 and JX010404) in GenBank. Multigene phylogenetic analyses (ITS, TUB, ACT, CHS-1, GAPDH, and CAL) using the Maximum likelihood method indicated that the 5 isolates were clustered with C. siamense. To perform pathogenicity tests, three one-year-old healthy S. grijsii plants were inoculated with conidial suspension (1 × 106 conidia/ml) of isolate Cs34 by brushing gently with a soft paintbrush, each plant was inoculated with 3 leaves. The same number of plants were inoculated with sterile water as control, and pathogenicity tests were performed three times. All plants were kept in an artificial climatic box at 28℃, with a 90% humidity and a 12 h light/dark cycle. Similar symptoms to those of the field were observed on all inoculated leaves after 5 days, whereas controls remained symptomless. Reisolated fungi from the diseased leaves were confirmed to be C. siamense by morphology and molecular characterization, confirming Koch's postulates. C. siamense has been reported causing anthracnose on Crinum asiaticum (Khoo et al. 2022) in Malaysia, and Erythrina crista-galli in China (Li et al. 2021). To our knowledge, this is the first report of C. siamense causing anthracnose on S. grijsii in China. The results of pathogen identification provide crucial information for control strategies of the disease.
  8. Yang D, Zhang Y, Lee YY, Lu Y, Wang Y, Zhang Z
    Food Chem, 2024 Feb 02;444:138635.
    PMID: 38325087 DOI: 10.1016/j.foodchem.2024.138635
    The relationship between batch and continuous enzymatic interesterification was studied through enzymatic interesterification of beef tallow. The interesterification degree (ID) during the batch reaction was monitored based on triacylglycerol composition, sn-2 fatty acid composition, solid fat content, and melting profile and was described by an exponential model. A relationship equation featuring reaction parameters of the two reations was established to predict the ID and physicochemical characteristics in continuous interesterification. The prediction of the ID based on triacylglycerol composition was reliable, with an R2 value greater than 0.85. Interesterification produced more high-melting-point components for both reactions, but the acyl migration in the batch-stirring reactor was much greater, resulting in faster crystallization, a more delicate crystal network, and lower hardness. The relationship equation can be employed to predict the ID, but the prediction of physicochemical properties was constrained by the difference in acyl migration degree between the two reactions.
  9. Guo M, Xu J, Long X, Liu W, Aris AZ, Yang D, et al.
    Ecotoxicol Environ Saf, 2024 Mar 01;272:116110.
    PMID: 38364763 DOI: 10.1016/j.ecoenv.2024.116110
    OBJECTIVE: We here explored whether perinatal nonylphenol (NP) exposure causes myocardial fibrosis (MF) during adulthood in offspring rats and determined the role of the TGF-β1/LIMK1 signaling pathway in NP-induced fibrosis in cardiac fibroblasts (CFs).

    METHODS AND RESULTS: Histopathology revealed increased collagen deposition and altered fiber arrangement in the NP and isoproterenol hydrochloride (ISO) groups compared with the blank group. Systolic and diastolic functions were impaired. Western blotting and qRT-PCR demonstrated that the expression of central myofibrosis-related proteins (collagens Ι and ΙΙΙ, MMP2, MMP9, TGF-β1, α-SMA, IL-1β, and TGF-β1) and genes (Collagen Ι, Collagen ΙΙΙ, TGF-β1, and α-SMA mRNA) was upregulated in the NP and ISO groups compared with the blank group. The mRNA-seq analysis indicated differential expression of TGF-β1 signaling pathway-associated genes and proteins. Fibrosis-related protein and gene expression increased in the CFs stimulated with the recombinant human TGF-β1 and NP, which was consistent with the results of animal experiments. According to the immunofluorescence analysis and western blotting, NP exposure activated the TGF-β1/LIMK1 signaling pathway whose action mechanism in NP-induced CFs was further validated using the LIMK1 inhibitor (BMS-5). The inhibitor modulated the TGF-β1/LIMK1 signaling pathway and suppressed the NP-induced increase in fibrosis-related protein expression in the CFs. Thus, the aforementioned pathway is involved in NP-induced fibrosis.

    CONCLUSION: We here provide the first evidence that perinatal NP exposure causes myocardial fibrosis in growing male rat pups and reveal the molecular mechanism and functional role of the TGF-β1/LIMK1 signaling pathway in this process.

  10. Yang D, Solihin MI, Ardiyanto I, Zhao Y, Li W, Cai B, et al.
    Sci Rep, 2024 Jul 02;14(1):15254.
    PMID: 38956185 DOI: 10.1038/s41598-024-64225-y
    Maritime objects frequently exhibit low-quality and insufficient feature information, particularly in complex maritime environments characterized by challenges such as small objects, waves, and reflections. This situation poses significant challenges to the development of reliable object detection including the strategies of loss function and the feature understanding capabilities in common YOLOv8 (You Only Look Once) detectors. Furthermore, the widespread adoption and unmanned operation of intelligent ships have generated increasing demands on the computational efficiency and cost of object detection hardware, necessitating the development of more lightweight network architectures. This study proposes the EL-YOLO (Efficient Lightweight You Only Look Once) algorithm based on YOLOv8, designed specifically for intelligent ship object detection. EL-YOLO incorporates novel features, including adequate wise IoU (AWIoU) for improved bounding box regression, shortcut multi-fuse neck (SMFN) for a comprehensive analysis of features, and greedy-driven filter pruning (GDFP) to achieve a streamlined and lightweight network design. The findings of this study demonstrate notable advancements in both detection accuracy and lightweight characteristics across diverse maritime scenarios. EL-YOLO exhibits superior performance in intelligent ship object detection using RGB cameras, showcasing a significant improvement compared to standard YOLOv8 models.
  11. Yu Y, Gao L, Niu X, Liu K, Li R, Yang D, et al.
    Adv Mater, 2023 Mar;35(12):e2210157.
    PMID: 36732915 DOI: 10.1002/adma.202210157
    Hot-carrier devices are promising alternatives for enabling path breaking photoelectric conversion. However, existing hot-carrier devices suffer from low efficiencies, particularly in the infrared region, and ambiguous physical mechanisms. In this work, the competitive interfacial transfer mechanisms of detrapped holes and hot electrons in hot-carrier devices are discovered. Through photocurrent polarity research and optical-pump-THz-probe (OPTP) spectroscopy, it is verified that detrapped hole transfer (DHT) and hot-electron transfer (HET) dominate the low- and high-density excitation responses, respectively. The photocurrent ratio assigned to DHT and HET increases from 6.6% to over 1133.3% as the illumination intensity decreases. DHT induces severe degeneration of the external quantum efficiency (EQE), especially at low illumination intensities. The EQE of a hot-electron device can theoretically increase by over two orders of magnitude at 10 mW cm-2 through DHT elimination. The OPTP results show that competitive transfer arises from the carrier oscillation type and carrier-density-related Coulomb screening. The screening intensity determines the excitation weight and hot-electron cooling scenes and thereby the transfer dynamics.
  12. Zhao Z, Gao Y, Sui W, Zhang Z, Feng L, Wang Z, et al.
    BMJ Open, 2024 Aug 17;14(8):e081485.
    PMID: 39153776 DOI: 10.1136/bmjopen-2023-081485
    OBJECTIVES: To seek a triple combination of biomarkers for early diagnosis of chronic kidney disease-mineral and bone metabolic disorder and to explore the diagnostic efficacy of β2-microglobulin, parathyroid hormone and blood urea nitrogen in chronic kidney disease-mineral and bone metabolic disorder.

    PARTICIPANTS: We collected medical records of 864 patients with chronic kidney disease (without direct contact with patients) and divided them into two groups based on the renal bone disease manifestations of all patients.

    PRIMARY AND SECONDARY OUTCOME MEASURES: There were 148 and 716 subjects in the Chronic kidney disease-mineral and bone metabolic disorder and the control groups, respectively. The aggregated data included basic information and various clinical laboratory indicators, such as blood lipid profile, antibody and electrolyte levels, along with renal function-related indicators.

    RESULTS: It was observed that most renal osteopathy occurs in the later stages of chronic kidney disease. In the comparison of two clinical laboratory indicators, 16 factors were selected for curve analysis and compared. We discovered that factors with high diagnostic values were β2-microglobulin, parathyroid hormone and blood urea nitrogen.

    CONCLUSIONS: The triple combination of β2-microglobulin+parathyroid hormone+blood urea nitrogen indicators can play the crucial role of a sensitive indicator for the early diagnosis of chronic kidney disease-mineral and bone metabolic disorder and in preventing or delaying the progress of chronic kidney disease-mineral and bone metabolic disorder.

  13. Ning F, Luo L, Ahmad S, Valli H, Jeevaratnam K, Wang T, et al.
    Pflugers Arch, 2016 Apr;468(4):655-65.
    PMID: 26545784 DOI: 10.1007/s00424-015-1750-0
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) predisposes to ventricular arrhythmia due to altered Ca(2+) homeostasis and can arise from ryanodine receptor (RyR2) mutations including RyR2-P2328S. Previous reports established that homozygotic murine RyR2-P2328S (RyR2 (S/S)) hearts show an atrial arrhythmic phenotype associated with reduced action potential (AP) conduction velocity and sodium channel (Nav1.5) expression. We now relate ventricular arrhythmogenicity and slowed AP conduction in RyR2 (S/S) hearts to connexin-43 (Cx43) and Nav1.5 expression and Na(+) current (I Na). Stimulation protocols applying extrasystolic S2 stimulation following 8 Hz S1 pacing at progressively decremented S1S2 intervals confirmed an arrhythmic tendency despite unchanged ventricular effective refractory periods (VERPs) in Langendorff-perfused RyR2 (S/S) hearts. Dynamic pacing imposing S1 stimuli then demonstrated that progressive reductions of basic cycle lengths (BCLs) produced greater reductions in conduction velocity at equivalent BCLs and diastolic intervals in RyR2 (S/S) than WT, but comparable changes in AP durations (APD90) and their alternans. Western blot analyses demonstrated that Cx43 protein expression in whole ventricles was similar, but Nav1.5 expression in both whole tissue and membrane fractions were significantly reduced in RyR2 (S/S) compared to wild-type (WT). Loose patch-clamp studies similarly demonstrated reduced I Na in RyR2 (S/S) ventricles. We thus attribute arrhythmogenesis in RyR2 (S/S) ventricles resulting from arrhythmic substrate produced by reduced conduction velocity to downregulated Nav1.5 reducing I Na, despite normal determinants of repolarization and passive conduction. The measured changes were quantitatively compatible with earlier predictions of linear relationships between conduction velocity and the peak I Na of the AP but nonlinear relationships between peak I Na and maximum Na(+) permeability.
  14. Li J, Guan Z, Wang J, Cheung CY, Zheng Y, Lim LL, et al.
    Nat Med, 2024 Jul 19.
    PMID: 39030266 DOI: 10.1038/s41591-024-03139-8
    Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an integrated image-language system (DeepDR-LLM), combining a large language model (LLM module) and image-based deep learning (DeepDR-Transformer), to provide individualized diabetes management recommendations to PCPs. In a retrospective evaluation, the LLM module demonstrated comparable performance to PCPs and endocrinology residents when tested in English and outperformed PCPs and had comparable performance to endocrinology residents in Chinese. For identifying referable DR, the average PCP's accuracy was 81.0% unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, we performed a single-center real-world prospective study, deploying DeepDR-LLM. We compared diabetes management adherence of patients under the unassisted PCP arm (n = 397) with those under the PCP+DeepDR-LLM arm (n = 372). Patients with newly diagnosed diabetes in the PCP+DeepDR-LLM arm showed better self-management behaviors throughout follow-up (P 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links