Displaying all 12 publications

Abstract:
Sort:
  1. Sankaran R, Manickam S, Yap YJ, Ling TC, Chang JS, Show PL
    Ultrason Sonochem, 2018 Nov;48:231-239.
    PMID: 30080546 DOI: 10.1016/j.ultsonch.2018.06.002
    In this study, a simple sugaring-out supported by liquid biphasic flotation technique combined with ultrasonication was introduced for the extraction of proteins from microalgae. Sugaring-out as a phase separation method is novel and has been used in the extraction of metal ions, biomolecules and drugs. But, its functioning in protein separation from microalgae is still unknown. In this work, the feasibility of sugaring-out coupled with ultrasound for the extraction of protein was investigated. Primary studies were carried out to examine the effect of sonication on the microalgae cell as well as the separation efficiency of the integrated method. Effect of various operating parameters such as the concentration of microalgae biomass, the location of sonication probe, sonication time, ultrasonic pulse mode (includes varying ON and OFF duration of sonication), concentration of glucose, types of sugar, concentration of acetonitrile and the flow rate in the flotation system for achieving a higher separation efficiency and yield of protein were assessed. Besides, a large-scale study of the integration method was conducted to verify the consistency of the followed technique. A maximum efficiency (86.38%) and yield (93.33%) were attained at the following optimized conditions: 0.6% biomass concentration, 200 g/L of glucose concentration, 100% acetonitrile concentration with 5 min of 5 s ON/10 s OFF pulse mode and at a flow rate of 100 cc/min. The results obtained for large scale were 85.25% and 92.24% for efficiency and yield respectively. The proposed liquid biphasic flotation assisted with ultrasound for protein separation employing sugaring-out demonstrates a high production and separation efficiency and is a cost-effective solution. More importantly, this method provides the possibility of extending its application for the extraction of other important biomolecules.
  2. Sankaran R, Show PL, Lee SY, Yap YJ, Ling TC
    Bioresour Technol, 2018 Feb;250:306-316.
    PMID: 29174909 DOI: 10.1016/j.biortech.2017.11.050
    Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production.
  3. Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, et al.
    Biotechnol J, 2018 Jun;13(6):e1700618.
    PMID: 29356369 DOI: 10.1002/biot.201700618
    Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact, and industrial potential of biofuels production from microalgae. The cost of biofuels production remains higher compared to conventional fuel sources. However, integration of biorefinery pathways with biofuels production for the recovery of value-added products (such as antioxidants, natural dyes, cosmetics, nutritional supplements, polyunsaturated fatty acids, and so forth) could substantially reduce the production costs. It also paves the way for sustainable energy resources by significantly reducing the emissions of CO2 , NOx , SOx , and heavy metals. Large-scale biofuels production has yet to be successfully commercialized with many roadblocks ahead and heavy competition with conventional fuel feedstock as well as technological aspects. One of the prominent challenges is to develop a cost-effective method to achieve high-density microalgal cultivation on an industrial scale. The biofuels industry should be boosted by Government's support in the form of subsidies and incentives, for addressing the pressing climate change issues, achieving sustainability, and energy security.
  4. Chow YH, Yap YJ, Tan CP, Anuar MS, Tejo BA, Show PL, et al.
    J Biosci Bioeng, 2015 Jul;120(1):85-90.
    PMID: 25553974 DOI: 10.1016/j.jbiosc.2014.11.021
    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load.
  5. Chow YH, Yap YJ, Show PL, Juan JC, Anuar MS, Ng EP, et al.
    J Biosci Bioeng, 2016 Nov;122(5):613-619.
    PMID: 27233672 DOI: 10.1016/j.jbiosc.2016.04.008
    The partitioning behavior of immunoglobulin G (IgG) in the aqueous two-phase system (ATPS) composed of poly(ethylene glycol) (PEG) and phosphate was studied. The parameters of ATPS exhibiting the pronounced effects on the partitioning behavior of IgG include phase composition, PEG molecular weight, and the addition of sodium chloride (NaCl). The accumulation of IgG at the interface of the ATPS increased drastically as the tie-line length (TLL) was increased. This trend was correlated with a linear relationship relating the natural logarithm of interfacial partition coefficient (ln G) to the difference of PEG concentration between the top phase and the bottom phase (Δ[PEG]), and a good fit was obtained. An attempt was made to correlate the natural logarithm of partition coefficient (ln K) to the presence of NaCl with the proposed linear relationship, ln K = α″ ln [Cl(-)] + β″. The proposed relationship, which serves as a better description of the underlying mechanics of the protein partitioning behavior in the polymer-salt ATPS, provides a good fit (r(2) > 0.95) for the data of IgG partitioning. An optimum recovery of 99.97% was achieved in an ATPS (pH 7.5) composed of 14.0% (w/w) PEG 1450, 12.5% (w/w) phosphate and 5.0% (w/w) NaCl.
  6. Lin YK, Show PL, Yap YJ, Tan CP, Ng EP, Ariff AB, et al.
    J Biosci Bioeng, 2015 Dec;120(6):684-9.
    PMID: 26111602 DOI: 10.1016/j.jbiosc.2015.04.013
    Purification of cyclodextrin glycosyl transferase (CGTase) from Bacillus cereus using polyethylene glycol (PEG)-potassium phosphates aqueous two-phase flotation (ATPF) system was studied in this paper. The effects of varying PEG molecular weight, tie-line length (TLL) value, volume ratio (VR), pH value, crude concentration and gas nitrogen flotation time were investigated. The optimal condition for purification of CGTase was attained at 18.0% (w/w) PEG 8000, 7.0% (w/w) potassium phosphates, VR of 3.0, 20% (w/w) crude load at pH 7, and 80 min nitrogen flotation time at a flow rate of 5 L/min. With this optimal condition, purification factor (PFT) of 21.8 and a yield (YT) of 97.1% were attained. CGTase was successfully purified in a single downstream processing step using the ATPF.
  7. Cheah WY, Show PL, Yap YJ, Mohd Zaid HF, Lam MK, Lim JW, et al.
    Bioengineered, 2020 12;11(1):61-69.
    PMID: 31884878 DOI: 10.1080/21655979.2019.1704536
    Chlorella sorokiniana CY-1 was cultivated using palm oil mill effluent (POME) in a novel-designed photobioreactor (NPBR) and glass-made vessel photobioreactor (PBR). The comparison was made on biomass and lipid productions, as well as its pollutants removal efficiencies. NPBR is transparent and is developed in thin flat panels with a high surface area per volume ratio. It is equipped with microbubbling and baffles retention, ensuring effective light and CO2 utilization. The triangular shape of this reactor at the bottom serves to ease microalgae cell harvesting by sedimentation. Both biomass and lipid yields attained in NPBR were 2.3-2.9 folds higher than cultivated in PBR. The pollutants removal efficiencies achieved were 93.7% of chemical oxygen demand, 98.6% of total nitrogen and 96.0% of total phosphorus. Mathematical model revealed that effective light received and initial mass contributes toward successful microalgae cultivation. Overall, the results revealed the potential of NPBR integration in Chlorella sorokiniana CY-1 cultivation, with an aim to achieve greater feasibility in microalgal-based biofuel real application and for environmental sustainability.
  8. Lin YK, Show PL, Yap YJ, Ariff A, Annuar MSBM, Lai OM, et al.
    Front Chem, 2018;6:448.
    PMID: 30345267 DOI: 10.3389/fchem.2018.00448
    An extractive bioconversion conducted on soluble starch with cyclodextrin glycosyltransferase (CGTase) enzyme in ethylene oxide-propylene oxide (EOPO)/potassium phosphates liquid biphasic system (LBS) to extract gamma-cyclodextrin (γ-CD) was examined. A range of EOPO (with potassium phosphates) molecular weights was screen to investigate the effect of the latter on the partioning efficency of CGTase and γ-CD. The results show that the optimal top phase γ-CD yield (74.4%) was reached in 35.0% (w/w) EOPO 970 and 10.0% (w/w) potassium phosphate with 2.0% (w/w) sodium chloride. A theoretical explanation for the effect of NaCl on γ-CD was also presented. After a 2 h bioconversion process, a total of 0.87 mg/mL concentration of γ-CD was produced in the EOPO/ phosphates LBS top phase. After the extraction of top phase from LBS, four continuous repetitive batches were successfully conducted with relative CGTase activity of 1.00, 0.86, 0.45, and 0.40 respectively.
  9. Voon SM, Ng KY, Chye SM, Ling APK, Voon KGL, Yap YJ, et al.
    CNS Neurol Disord Drug Targets, 2020;19(10):725-740.
    PMID: 32881676 DOI: 10.2174/1871527319666200902134129
    1-Methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol, commonly known as salsolinol, is a compound derived from dopamine. It was first discovered in 1973 and has gained attention for its role in Parkinson's disease. Salsolinol and its derivatives were claimed to play a role in the pathogenesis of Parkinson's disease as a neurotoxin that induces apoptosis of dopaminergic neurons due to its structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its ability to induce Parkinsonism. In this article, we discussed the biosynthesis, distribution and blood-brain barrier permeability of salsolinol. The roles of salsolinol in a healthy brain, particularly the interactions with enzymes, hormone and catecholamine, were reviewed. Finally, we discussed the involvement of salsolinol and its derivatives in the pathogenesis of Parkinson's disease.
  10. Yap YJ, Wong PF, AbuBakar S, Sam SS, Shunmugarajoo A, Soh YH, et al.
    Clin Chim Acta, 2023 Feb 15;541:117243.
    PMID: 36740088 DOI: 10.1016/j.cca.2023.117243
    Macrophage activation and hypercytokinemia are notable presentations in certain viral infections leading to severe disease and poor prognosis. Viral infections can cause macrophage polarization into the pro-inflammatory M1 or anti-inflammatory M2 phenotype. Activated M1 macrophages usually restrict viral replication whereas activated M2 macrophages suppress inflammation and promote tissue repair. In response to inflammatory stimuli, macrophages polarize to the M2 phenotype expressing hemoglobin scavenger CD163 surface receptor. The CD163 receptor is shed as the soluble form, sCD163, into plasma or tissue fluids. sCD163 causes detoxification of pro-oxidative hemoglobin which produces anti-inflammatory metabolites that promote the resolution of inflammation. Hence, increased CD163 expression in tissues and elevated circulatory levels of sCD163 have been associated with acute and chronic inflammatory diseases. CD163 and other macrophage activation markers have been commonly included in the investigation of disease pathogenesis and progression. This review provides an overview of the involvement of CD163 in viral diseases. The clinical utility of CD163 in viral disease diagnosis, progression, prognosis and treatment evaluation is discussed.
  11. Chow YH, Yap YJ, Anuar MS, Tejo BA, Ariff A, Show PL, et al.
    PMID: 23911538 DOI: 10.1016/j.jchromb.2013.06.034
    A relationship is proposed for the interfacial partitioning of protein in poly(ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS). The relationship relates the natural logarithm of interfacial partition coefficient, ln G to the PEG concentration difference between the top and bottom phases, Δ[PEG], with the equation ln G=AΔ[PEG]+B. Results showed that this relationship provides good fits to the partition of bovine serum albumin (BSA) in ATPS which is comprised of phosphate and PEG of four different molecular weight 1450g/mol, 2000g/mol, 3350g/mol and 4000g/mol, with the tie-line length (TLL) in the range of 44-60% (w/w) at pH 7.0. The decrease of A values with the increase of PEG molecular weight indicates that the correlation between ln G and Δ[PEG] decreases with the increase in PEG molecular weight and the presence of protein-polymer hydrophobic interaction. When temperature was increased, a non-linear relationship of ln G inversely proportional to temperature was observed. The amount of proteins adsorbed at the interface increased proportionally with the amount of BSA loaded whereas the partition coefficient, K remained relatively constant. The relationship proposed could be applied to elucidate interfacial partitioning behaviour of other biomolecules in polymer-salt ATPS.
  12. Lin YK, Show PL, Yap YJ, Ariff AB, Mohammad Annuar MS, Lai OM, et al.
    J Biosci Bioeng, 2016 Jun;121(6):692-696.
    PMID: 26702953 DOI: 10.1016/j.jbiosc.2015.11.001
    Aqueous two-phase system (ATPS) extractive bioconversion provides a technique which integrates bioconversion and purification into a single step process. Extractive bioconversion of gamma-cyclodextrin (γ-CD) from soluble starch with cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) enzyme derived from Bacillus cereus was evaluated using polyethylene glycol (PEG)/potassium phosphate based on ATPS. The optimum condition was attained in the ATPS constituted of 30.0% (w/w) PEG 3000 g/mol and 7.0% (w/w) potassium phosphate. A γ-CD concentration of 1.60 mg/mL with a 19% concentration ratio was recovered after 1 h bioconversion process. The γ-CD was mainly partitioned to the top phase (YT=81.88%), with CGTase partitioning in the salt-rich bottom phase (KCGTase=0.51). Repetitive batch processes of extractive bioconversion were successfully recycled three times, indicating that this is an environmental friendly and a cost saving technique for γ-CD production and purification.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links