Secara geologi, kawasan Cameron Highland terdiri daripada batuan granit batolit yang merejah ke dalam batuan sedimen yang lebih tua. Rejahan jasad igneus asidik ini menyebabkan pembentukan batuan meta-sedimen dan batuan metamorfik lain sebagai sisa bumbung. Sekis sering ditemui telah mengalami luluhawa tinggi hingga sepenuhnya, berwarna kelabu cerah hingga gelap dengan butiran halus hingga sederhana dan struktur foliasi yang ketara. Manakala batuan granit mengandungi mineral kuarza, felspar dan butiran biotit dan/atau turmalin. Kebanyakan cerun potongan jalan raya yang dibina merentasi jasad batuan ini dan survei ketidakstabilan cerun dilakukan berdasarkan jenis, geometri dan cirian fiziko-kimia tanah cerun. Hasil cerapan lapangan menunjukkan bahawa jenis cerun yang gagal adalah jenis cerun tanah yang terdiri daripada jenis gelinciran cetek dan dalam. Antara faktor yang menyumbang kepada ketidakstabilan cerun adalah geometri cerun seperti cerun yang tinggi dan sudut muka cerun yang curam, sifat keperoian tanah pada cerun dan kekurangan litupan vegetasi permukaan. Ini menyebabkan permukaan cerun terdedah kepada hentaman terus hujan. Kesan daripada air larian permukaan juga menyebabkan pembentukan alur-alur hakisan pada muka cerun tanah. Sifat fiziko-kimia bahan cerun (tanah) seperti taburan saiz partikel, pH, kandungan ferum oksida, bahan organik, kandungan air, ketumpatan pukal dan sebenar serta keporosan juga didapati memainkan peranan sebagai faktor yang dalaman dalam mempengaruhi kestabilan cerun tertentu yang dikaji. Julat pH tanah yang rendah (sifat asidik) pada semua cerun mengurangkan kandungan ferum oksida dalam tanah yang bertindak sebagai bahan penyimen tanah. Ini menyebabkan agregatan tanah menjadi lemah dan mudah terhakis.
Zinc-air batteries (ZABs) offer high specific energy and low-cost production. However, rechargeable ZABs suffer from a limited cycle life. This paper reports that potassium persulfate (KPS) additive in an alkaline electrolyte can effectively enhance the performance and electrochemical characteristics of rechargeable zinc-air flow batteries (ZAFBs). Introducing redox additives into electrolytes is an effective approach to promote battery performance. With the addition of 450 ppm KPS, remarkable improvement in anodic currents corresponding to zinc (Zn) dissolution and limited passivation of the Zn surface is observed, thus indicating its strong effect on the redox reaction of Zn. Besides, the addition of 450 ppm KPS reduces the corrosion rate of Zn, enhances surface reactions and decreases the solution resistance. However, excess KPS (900 and 1350 ppm) has a negative effect on rechargeable ZAFBs, which leads to a shorter cycle life and poor cyclability. The rechargeable ZAFB, using 450 ppm KPS, exhibits a highly stable charge/discharge voltage for 800 cycles. Overall, KPS demonstrates great promise for the enhancement of the charge/discharge performance of rechargeable ZABs.
In this letter, we investigate the fabrication of Silicon nanostructure patterned on lightly doped (10(15) cm(-3)) p-type silicon-on-insulator by atomic force microscope nanolithography technique. The local anodic oxidation followed by two wet etching steps, potassium hydroxide etching for silicon removal and hydrofluoric etching for oxide removal, are implemented to reach the structures. The impact of contributing parameters in oxidation such as tip materials, applying voltage on the tip, relative humidity and exposure time are studied. The effect of the etchant concentration (10% to 30% wt) of potassium hydroxide and its mixture with isopropyl alcohol (10%vol. IPA ) at different temperatures on silicon surface are expressed. For different KOH concentrations, the effect of etching with the IPA admixture and the effect of the immersing time in the etching process on the structure are investigated. The etching processes are accurately optimized by 30%wt. KOH +10%vol. IPA in appropriate time, temperature, and humidity.
The concern about our dependency on non-renewable resources and overwhelming environmental issues such as pollution caused by non-degradable packaging materials has prompted researchers to come up with alternatives to solve this problem. Thermoplastic polylactic acid (PLA) has been gaining interest due to its versatility and easy processability, thus this study was carried out to find out the properties of PLA reinforced with pineapple fibers. However, surface of the natural fibers need to be treated for better properties enhancement in the polymer matrices. Considering this, fibers were treated with 10% (w/v) concentration of potassium hydroxide (KOH) and then continued for mixing with PLA at a fixed ratio of plasticizer by using internal mixer, and then the composites were prepared into sheet via hot press. Characterization for the mechanical and morphological was conducted by using tensile testing and scanning electron microscopy, respectively. After the analysis, it is found that the surface treated pineapple fiber composite showed better elongation at break compared to untreated fiber composite. The enhance properties of PLA nanocomposites has potential to be used in various packaging materials.
The adsorption of phenol, from aqueous solutions on activated carbon from waste tyres, was studied in a batch system at different initial concentrations (100-500mg/L) at 30°C for 48 hours. The activated carbon was prepared using the two-step physiochemical activation, with potassium hydroxide (KOH) at ratio KOH/char = 5. The carbonization process was done at 800°C for 1 hour with nitrogen flow rate 150ml/min, followed by the activation with the carbon dioxide flow rate 150ml/min at 800°C for 2 hours. The adsorption isotherms were determined by shaking 0.1g of activated carbon with 100ml phenol solutions. The initial and final concentrations of phenol in aqueous solution were analyzed using the UV-Visible Spectrophotometer (Shimadzu, UV-1601) at a wavelength of 270nm. Experimental isotherm data were analyzed using the Langmuir and Freundlich isotherm models.The equilibrium data for phenol adsorption could fit both isotherm models well with the R2 value of 0.9774 and 0.9895, respectively. The maximum adsorption capacity of the adsorbent obtained from the Langmuir model was up to 156.25 mg/g
Carbon spheres (CSs) were synthesized from sucrose by hydrothermal reaction. The synthesized materials were further
activated with potassium hydroxide (KOH) at different concentrations. The effects of KOH concentration on the surface area
and morphology were investigated. The route for pore formation and structural deformation in carbon spheres during
activation has been proposed and discussed based on micrographs and porosity trends. It was suggested that the pore
formation and structural deformation phenomena were due to the intercalating power of energized K+ into the carbon.
This work provides an insight of the pore formation in carbon spheres for the development of adsorbents as well as for
the understanding of the structural deformation of such materials at higher KOH concentrations.
Purification of cyclodextrin glycosyl transferase (CGTase) from Bacillus cereus using polyethylene glycol (PEG)-potassium phosphates aqueous two-phase flotation (ATPF) system was studied in this paper. The effects of varying PEG molecular weight, tie-line length (TLL) value, volume ratio (VR), pH value, crude concentration and gas nitrogen flotation time were investigated. The optimal condition for purification of CGTase was attained at 18.0% (w/w) PEG 8000, 7.0% (w/w) potassium phosphates, VR of 3.0, 20% (w/w) crude load at pH 7, and 80 min nitrogen flotation time at a flow rate of 5 L/min. With this optimal condition, purification factor (PFT) of 21.8 and a yield (YT) of 97.1% were attained. CGTase was successfully purified in a single downstream processing step using the ATPF.
This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with -C=C- and O-H stretching at peaks of 1644 cm-1 and 3435 cm-1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 °C, with a final reduction of ~ 11%.
Blood pressure (BP) measurement was first recorded in 1700's by Hales who concluded that it was due to a pressure in the blood (1 , 2]. This is his well renowned discovery besides his other experiments on the capacity of ventricles and many other feature of circulatory system. The development of BP measurement was then rather quiet until about a century later. The accurate study of BP started with the introduction of mercury manometer by Poiseuille in 1800's who demonstrated that the arterial pressure was maintained in smaller arteries and that the blood flow through mesenteric bed did not depend on development of the venous change but varied directly with arterial pressure [3]. In the year of 1928, Poiseuille work was recognised when he won the gold medal of Royal Academy of Medicine for his doctoral dissertation on the measurement of BP using mercury manometer that was directly inserted with cannula filled with potassium bicarbonate as anticoagulant into an artery [3]. Later, his invention has enabled Carl Ludwig to develop kymograph, a method to record clinical physiological data including the BP measurements [3]. (Copied from article).
Clay has been regarded as very important natural industrial materials. All these industries exploit the properties that clay can be molded into any shape and fired to dry without losing its form. A study was carried out on clay samples from eight sites in the north-eastern part of Peninsular Malaysia. The study was accomplished by using X-ray diffraction (XRD) technique. The x-ray diffraction spectra obtained enable the determination of the lattice spacing associated with the types of clay and nonclay minerals present in the samples. Results of the study shows that the major components of clay minerals present in all samples studied are kaolinite and illite. The presence of kaolinite is confirmed by firing test in which the kaolinite diffraction peaks disappeared upon heating the samples at 600 o C. The presence of non-clay minerals such as quartz, mica, feldspar and chlorite are also observed.
Bioprotein is one of the useful products obtained from biotechnology invention. It is a promising replacement for the commercial fish feed supplement. In this study, the enrichment of the bioprotein content after solid state fermentation using palm kernel cake and seaweed by the white rot fungus: Phanerochaete chrysoporium and yeast: Candida utilis was carried out. The growth media components were selected from 11 types of media using Plackett-Burman design (hereinafter PBD) and were optimized by one-factor-at-a-time (OFAT) method with bioprotein concentration (mg/g) as the response. From the screening result using PBD, three media components, namely K2HPO4, CuSO4.5H2O and MnSO4.H2O were selected for further optimization using OFAT method because of their positive contributions to the response. The final results showed that 5.0 g/L K2HPO4, 3.0 g/L CuSO4.5H2O and 0.1 g/L MnSO4.H2O were there to be the optimum media constituents with 9.0 g/L, MgSO4.7H2O, 0.1 g/L, CaCl2.H2O, 3.0 g/L FeSO4.7H2O and 3.0 g/L peptone as fixed compositions. At this optimum concentration, the protein increment of 11% was observed as compared to the results determined in the screening using PBD. The study revealed the benefits of using mixed cultures in improving the protein concentrations which can be used as nutritious fish feed.
A study was conducted to determine the effects of a plant growth regulator (paclobutrazol, PBZ) and commercial
fertilizer (Krista-K Plus) as a source of potassium nitrate (KNO3
) on the growth of Xanthostemon chrysantus. It was
also attempted to investigate the anatomical changes in the leaf and stem after the treatment. Nine treatments, i.e.
control (no PBZ and Krista-K Plus application), 0 PBZ gL-1 + 100 g Krista-K Plus, 0 PBZ gL-1 + 200 g Krista-K Plus,
0.125 PBZ gL-1 + 0 g Krista-K Plus, 0.125 PBZ gL-1 + 100 g Krista-K Plus, 0.125 PBZ gL-1 + 200 g Krista-K Plus, 0.25
PBZ gL-1 + 0 g Krista-K Plus, 0.25 PBZ gL-1 + 100 g Krista-K Plus and 0.25 PBZ gL-1 + 200 g Krista-K Plus, were
tested. PBZ was soil drenched at the commencement of the study while Krista-K Plus was applied at three-month
intervals. Plant growth performances such as tree height, diameter at breast height, canopy diameter and leaf area
were recorded monthly throughout the study period. Stem and leaf samples were collected before the application
of treatments and after six months of treatments for anatomical observation by using electron microscope. Plant
height, diameter at breast height, crown diameter and leaf area were significantly reduced with the application of
PBZ. Palisade parenchyma thickness was increased by 33.83% with 0.25 PBZ gL-1 + 200 g Krista-K Plus, while only
2.44% increment recorded in the control tree. Xylem thickness in the stem was reduced by 21.81% after treated with
the highest dosage of PBZ, while the control tree only had 1.78% increment. Spongy parenchyma thickness in the leaf
was unaffected. However, palisade parenchyma was found the thickest after combined treatment with 0.25 PBZ gL-1
+ 200 g Krista-K Plus. Micrograph images of the cross-section of leaf lamina and stem showed that the cells were
tightly arranged in response to the application of PBZ.
Liquid biphasic flotation (LBF), an integrated process of liquid biphasic system (LBS) and adsorptive bubbles flotation, was used for the purification of C-phycocyanin from S. platensis microalgae. Various experimental parameters such as type of phase forming polymer and salt, concentration of phase forming components, system pH, volume ratio, air flotation time and crude extract concentration were evaluated to maximise the C-phycocyanin recovery yield and purity. The optimal conditions for the LBF system achieving C-phycocyanin purification fold of 3.49 compared to 2.43 from the initial LBF conditions was in polyethylene glycol (PEG) 4000 and potassium phosphate combination, with 250 g/L of polymer and salt concentration each, volume ratio of 1:0.85, system pH of 7.0, air flotation duration of 7 min and phycocyanin crude extract concentration of 0.625 %w/w. The LBF has effectively enhanced the purification of C-phycocyanin in a cost effective and simple processing.
In this study, potassium oxide supported on dolomite adsorbent was used as an adsorbent for free fatty acids (FFAs) treatment in crude palm oil (CPO). The characteristics of the adsorbent were determined by TGA, XRD, SEM, BET and TPD-CO2. Taguchi method was utilized for experimental design and optimum condition determination. There were four parameters and three levels involved in this study: time (30, 60, 90 min), stirring rate (300, 500, 700 rpm), adsorbent dosage (1, 3, 5 wt%) and K2O concentration (5, 10, 15 wt%). The adsorbent had a larger pore size, higher basic strength, and more basic sites in greater efficiency (63%) in FFAs removal from CPO. The optimum conditions were at 30 min time, 700 rpm stirring rate, 5 wt% adsorbent dosage and 15 wt% K2O concentration. Taguchi method simplified determination of experimental parameters and minimized the operating costs.
A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermogravimetric Analysis. The conversions of AN, comonomers (BA and EHA) and FN were 55%-71%, 85%-91% and 76%-79%, respectively. It was found that with the same comonomer feed (10%), the Tg of AN/EHA copolymer was lower at 63 °C compared to AN/BA copolymer (70 °C). AN/EHA/FN terpolymer also exhibited a lower Tg at 63 °C when compared to that of the AN/BA/FN terpolymer (67 °C). By incorporating BA and EHA into a PAN system, the char yield was reduced to ~38.0% compared to that of AN (~47.7%). It was found that FN reduced the initial cyclization temperature of AN/BA/FN and AN/EHA/FN terpolymers to 228 and 221 °C, respectively, in comparison to that of AN/BA and AN/EHA copolymers (~260 °C). In addition, FN reduced the heat liberation per unit time during the stabilization process that consequently reduced the emission of volatile group during this process. As a result, the char yields of AN/BA/FN and AN/EHA/FN terpolymers are higher at ~45.1% and ~43.9%, respectively, as compared to those of AN/BA copolymer (37.1%) and AN/EHA copolymer (38.0%).
Aqueous two-phase system (ATPS) extractive bioconversion provides a technique which integrates bioconversion and purification into a single step process. Extractive bioconversion of gamma-cyclodextrin (γ-CD) from soluble starch with cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) enzyme derived from Bacillus cereus was evaluated using polyethylene glycol (PEG)/potassium phosphate based on ATPS. The optimum condition was attained in the ATPS constituted of 30.0% (w/w) PEG 3000 g/mol and 7.0% (w/w) potassium phosphate. A γ-CD concentration of 1.60 mg/mL with a 19% concentration ratio was recovered after 1 h bioconversion process. The γ-CD was mainly partitioned to the top phase (YT=81.88%), with CGTase partitioning in the salt-rich bottom phase (KCGTase=0.51). Repetitive batch processes of extractive bioconversion were successfully recycled three times, indicating that this is an environmental friendly and a cost saving technique for γ-CD production and purification.
Steam explosion of oil palm frond has been carried out under different temperatures between 180 and 210°C for 4 min (severity of 2.96-3.84) after impregnation of the frond chips with water or KOH solution. The effects of impregnation and steam explosion conditions of oil palm fronds on the water soluble fraction and insoluble fraction were investigated. The maximum yield of hemicelluloses in water soluble fractions recovered was 23.49% and 25.33% for water and KOH impregnation, treated with steam explosion at temperature of 210°C (severity of 3.84) with a fractionation efficiency of 77.30% and 83.32%, respectively. Under this condition, the water insoluble fractions contained celluloses at 60.83% and 64.80% for water and KOH impregnation, respectively. The steam explosion temperature of 210°C for 4 min (logR(o) 3.84) was found to be the best condition in the extraction of hemicelluloses from OPF for both types of impregnation.
The preparation of chars and activated carbon as low-cost elemental mercury adsorbents was carried out through the carbonisation of coconut husk (pith and fibre) and the activation of chars with potassium hydroxide (KOH), respectively. The synthesised adsorbents were characterised by using scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption/desorption analysis. The elemental mercury removal performance was measured using a conventional flow type packed-bed adsorber. The physical and chemical properties of the adsorbents changed as a result of the carbonisation and activation process, hence affecting on the extent of elemental mercury adsorption. The highest elemental mercury (Hg°) adsorption capacity was obtained for the CP-CHAR (3142.57 µg g(-1)), which significantly outperformed the pristine and activated carbon adsorbents, as well as higher than some adsorbents reported in the literature.
Rice husk (RH), an abundant by-product of rice milling, was used for the preparation of activated carbon (RHAC) via KOH and K(2)CO(3) chemical activation. The activation process was performed at the microwave input power of 600 W for 7 min. RHACs were characterized by low temperature nitrogen adsorption/desorption, scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption behavior was examined using methylene blue as adsorbate. The K(2)CO(3)-activated sample showed higher yield and better pore structures and adsorption capacity development than the KOH-activated sample, with a BET surface area, total pore volume and monolayer adsorption capacity of 1165 m(2)/g, 0.78 cm(3)/g and 441.52 mg/g, respectively. The results revealed the feasibility of microwave heating for preparation of high surface area activated carbons from rice husks via K(2)CO(3) activation.
In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.