Displaying all 12 publications

Abstract:
Sort:
  1. Yousif, Emad, Ahmed, Dina S., Ahmed, Ahmed A., Hameed, Ayad S., Yusop, Rahimi M., Redwan, Amamer, et al.
    Science Letters, 2018;12(2):19-27.
    MyJurnal
    The photodegradation rate constant and surface morphology of poly(vinyl chloride), upon irradiation with ultraviolet light was investigated in the presence of polyphosphates as photostabilizers. Poly(vinyl chloride) photodegradation rate constant was lower for the films containing polyphosphates compared to the blank film. In addition, the surface morphology of the irradiated poly(vinyl chloride) containing polyphosphates, examined by scanning electron microscopy, indicates that the surface was much smoother compared to the blank film.
  2. Salimon J, Salih N, Yousif E
    J Oleo Sci, 2011;60(12):613-8.
    PMID: 22123242
    Petroleum is a finite source as well as causing several environmental problems. Therefore petroleum needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources; the use of oleochemicals as biobased lubricants is of significant interest. This article presents a series of chemical modification on oleic acid to yield synthetic biolubricant basestocks. Measuring of density, volatility, cloud point (CP), pour point (PP), flash point (FP), viscosity index (VI), onset temperature (OT) and signal maximum temperature (SMT) was carried out for each compound. Furthermore, the friction and wear properties were measured using high-frequency reciprocating rig (HFRR). The results showed that octadecyl 9-octadecyloxy-10-hydroxyoctadecanoate exhibited the most favorable low-temperature performance (CP %ndash;26°C, PP %ndash;28°C) and the lowest ball wear scan diameter (42 µm) while propyl 9-propyloxy-10-hydroxyoctadecanoate exhibited the higher oxidation stability (OT 156°C).
  3. Salimon J, Abdullah BM, Yusop RM, Salih N, Yousif E
    Springerplus, 2013;2:429.
    PMID: 24083099 DOI: 10.1186/2193-1801-2-429
    Biolubricant base oils, 9,12-hydroxy-10,13-oleioxy-12-octadecanoic acid (HYOOA) was synthesized based on the esterification reaction of Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) with oleic acid (OA) and catalyzed by p-Toluenesulfonic acid. The optimum conditions for the experiment using D-optimal design to obtain high yield% of 84.61, conversion% of 83.54 and lowest OOC% of 0.05 were predicted at OA/MEOA ratio of 0.2:1 (mol/mol), PTSA/MEOA ratio of 0.4:1 (mol/mol), reaction temperature at 110°C, and reaction time at 4.5 h. The FTIR peaks of HYOOA indicate the disappearance of the absorption band at 820 cm(-1), which belongs to the oxirane ring. (13)C and (1)H NMR spectra analyses confirmed the result of HYOOA with appearance carbon-ester (C = O) chemical shift at 174.1 ppm and at 4.06 ppm for (13)C and (1)H NMR respectively.
  4. Salih N, Salimon J, Yousif E, Abdullah BM
    Chem Cent J, 2013;7(1):128.
    PMID: 23885790 DOI: 10.1186/1752-153X-7-128
    Plant oils have been investigated as a potential source of environmentally favorable biolubricants because of their biodegradability, renewability and excellent lubrication performance. Low oxidation and thermal stability, poor low-temperature properties and a narrow range of available viscosities, however, limit their potential application as industrial lubricants. The inherent problems of plant oils can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, we will demonstrate how functionalization helps overcome these disadvantages.
  5. Altaee N, El-Hiti GA, Fahdil A, Sudesh K, Yousif E
    Springerplus, 2016;5(1):762.
    PMID: 27386248 DOI: 10.1186/s40064-016-2480-2
    Petroleum polymers contribute to non-degradable waste materials and it would therefore be desirable to produce ecofriendly degradable materials. Biodegradation of polyhydroxybutyrate (PHB) in the presence of oligomer hydrolase and PHB depolymerase gave 3-hydroxybutyric acid which could be oxidized to acetyl acetate. Several bacteria and fungi can degrade PHB in the soil.
  6. Hassan F, El-Hiti GA, Abd-Allateef M, Yousif E
    Saudi Med J, 2017 Apr;38(4):359-365.
    PMID: 28397941 DOI: 10.15537/smj.2017.4.17061
    OBJECTIVES: To investigate the cytotoxic effect of anastrozole on breast (MCF7), liver hepatocellular (HepG2), and prostate (PC3) cancer cells. Methods: This is a prospective study. Anastrozole's mechanism of apoptosis in living cells was also determined by high content screening (HCS) assay. Methylthiazol tetrazolium (MTT) assay was carried out at the Centre of Biotechnology Research's, Al-Nahrain University, Baghdad, Iraq between July 2015 and October 2015. The HCS assay was performed at the Centre for Natural Product Research  and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia between November 2015 and February 2016. Results: The most significant cytotoxic effect of anastrozole towards 3 cancer cell lines was obtained when its concentration was 400 µg/mL. The MCF7 cells were more sensitive to anastrozole compared with the HepG2 and PC-3 cells. There was a significant increase in membrane permeability, cytochrome c and nuclear intensity when anastrozole (200 µg/mL) was used compared with doxorubicin (20 µg/mL) as a standard. Also, there was a significant decrease in cell viability and mitochondrial membrane permeability when anastrozole (200 µg/mL) was used compared with positive control. Conclusion: Anastrozole showed cytotoxic effects against the MCF7, HepG2, and PC3 cell lines as determined in-vitro by the MTT assay. The HCS technique also showed toxic effect towards MCF7. It is evident that anastrozole inhibits the aromatase enzyme preventing the aromatization mechanism; however, it has a toxic effect.
  7. Abdullah BM, Zubairi SI, Huri HZ, Hairunisa N, Yousif E, Basu RC
    PLoS One, 2016;11(3):e0151603.
    PMID: 27008312 DOI: 10.1371/journal.pone.0151603
    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.
  8. Yousif E, Ahmed DS, Ahmed AA, Hameed AS, Muhamed SH, Yusop RM, et al.
    Environ Sci Pollut Res Int, 2019 Apr;26(10):9945-9954.
    PMID: 30739295 DOI: 10.1007/s11356-019-04323-x
    Although plastic induces environmental damages, almost the consumption of poly(vinyl chloride) never stops increasing. Therefore, this work abstracted by two parts, first, synthesis of Schiff bases 1-4 compounds through the reaction of amino group with appropriate aromatic aldehyde, reaction of PVC with Schiff bases compounds 1-4 in THF to form a new modified PVC-1, PVC-2, PVC-3, and PVC-4. The structures of Schiff bases 1-4 and the modified PVC-1, PVC-2, PVC-3, and PVC-4 have been characterized by different spectroscopic analyses. Second, the influence of introducing 4-amino-1,2,4-triazole as a pendent groups into PVC chain investigated on photostability rules of tests. The modified polymers photostability investigated by observing indices (ICO, Ipo, and IOH), weight loss, UV and morphological studies, and all results obtained indicated that PVC-1, PVC-2, PVC-3 and PVC-4 gave lower growth rate of ICO, IPO, and IOH through UV exposure time. The photostability are given as PVC-4 
  9. Yousif E, Ahmed DS, Ahmed A, Abdallh M, Yusop RM, Mohammed SA
    Environ Sci Pollut Res Int, 2019 Sep;26(25):26381-26388.
    PMID: 31290046 DOI: 10.1007/s11356-019-05784-w
    A new Schiff base containing 1,2,4-triazole ring system (L) was synthesized and confirmed by 1HNMR, FTIR spectroscopy. The chemical modification of PVC with a new Schiff base (L) was synthesized to produce a homogenous blend (PVC-L). A homogenous blend (PVC-L) was added to copper chloride to produce PVC-L-Cu (II). The PVC films had been irradiated with ultraviolet light for a long period and confirmed by FTIR spectroscopy and weight loss; the surface morphology was inspected by scanning electron microscopy.
  10. Yousif E, Al-Amiery AA, Kadihum A, Kadhum AA, Mohamad AB
    Molecules, 2015 Nov 04;20(11):19886-99.
    PMID: 26556323 DOI: 10.3390/molecules201119665
    The photostabilization of polyvinyl chloride (PVC) films by Schiff bases was investigated. Polyvinyl chloride films containing 0.5 wt % Schiff bases were produced using the same casting method as that used for additive-free PVC films from tetrahydrofuran (THF) solvent. The photostabilization activities of these compounds were determined by monitoring the carbonyl, polyene and hydroxyl indices with irradiation time. The changes in viscosity average molecular weight of PVC with irradiation time were also monitored using THF as a solvent. The quantum yield of chain scission (Φcs) for the studied complexes in PVC was estimated to range between 4.72 and 8.99 × 10(-8). According to the experimental results, several mechanisms were suggested, depending on the structure of the additive. Ultra violet (UV) absorption, peroxide decomposition and radical scavenging were suggested as the photostabilizing mechanisms.
  11. Jawad AH, Abdulhameed AS, Bahrudin NN, Hum NNMF, Surip SN, Syed-Hassan SSA, et al.
    Water Sci Technol, 2021 Oct;84(8):1858-1872.
    PMID: 34695015 DOI: 10.2166/wst.2021.355
    In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high-surface-area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This SBW activated carbon (SBWAC) was characterized by crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. Conversely, a thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high-surface-area AC that can potentially remove more cationic dyes from the aqueous environment.
  12. Ebadi M, Asikin-Mijan N, Md Jamil MS, Iqbal A, Yousif E, Md Zain AR, et al.
    Polymers (Basel), 2023 Jan 01;15(1).
    PMID: 36616581 DOI: 10.3390/polym15010232
    Although metallic nanocatalysts such as palladium nanoparticles (Pd NPs) are known to possess higher catalytic activity due to their large surface-to-volume ratio, however, in nanosize greatly reducing their activity due to aggregation. To overcome this challenge, superparamagnetic chitosan-coated manganese ferrite was successfully prepared and used as a support for the immobilization of palladium nanoparticles to overcome the above-mentioned challenge. The Pd-Chit@MnFe2O4 catalyst exhibited high catalytic activity in 4-nitrophenol and 4-nitroaniline reductions, with respective turnover frequencies of 357.1 min-1 and 571.4 min-1, respectively. The catalyst can also be recovered easily by magnetic separation after each reaction. Additionally, the Pd-Chit@MnFe2O4 catalyst performed well in the reductive deprotection of allyl carbamate. Coating the catalyst with chitosan reduced the Pd leaching and its cytotoxicity. Therefore, the catalytic activity of Pd-Chit@MnFe2O4 was proven to be unrestricted in biology conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links