CASE REPORT: Here we report a case of a 39-year-old lady, with an incidental finding of hyperleukocytosis (white blood cells count: 139.2 x 109/L). Her peripheral blood film revealed 36% of blasts and a bone marrow aspiration showed 53% of blasts. Immunophenotyping showed a population of blasts exhibiting positivity of two lineages, myeloid lineage and B-lymphoid lineage with strong positivity of CD34 and terminal deoxynucleotidyl transferase (Tdt). A conventional karyotyping revealed the presence of Philadelphia chromosome. She was diagnosed with MPAL with t(9,22), BCR ABL1, which carried a poor prognosis. She was treated with acute lymphoblastic leukaemia (ALL) chemotherapy protocol coupled with a tyrosine kinase inhibitor and was planned for an allogeneic stem cells transplant.
CONCLUSION: This MPAL case was diagnosed incidentally in an asymptomatic patient during medical check-up. We highlight this rare case report to raise the awareness about this rare disease. Understanding the pathogenesis of the disease with the underlying genes responsible for triggering the disease, uniform protocols for diagnosis and targeted treatment will help for proper management of these patients.
METHODS: A total of 760 voluntary donors who attended the Blood Bank, Penang Hospital or offsite blood donation campaigns from April to May 2014 were recruited. The ABO and RhD blood groups were determined by the conventional tile method and the solid phase method, in which the tube method was used as the gold standard.
RESULTS: For ABO blood grouping, the tile method has shown 100% concordance results with the gold standard tube method, whereas the solid-phase method only showed concordance result for 754/760 samples (99.2%). Therefore, for ABO grouping, tile method has 100% sensitivity and specificity while the solid phase method has slightly lower sensitivity of 97.7% but both with good specificity of 100%. For RhD grouping, both the tile and solid phase methods have grouped one RhD positive specimen as negative each, thus giving the sensitivity and specificity of 99.9% and 100% for both methods respectively.
CONCLUSION: The 'InTec Blood Grouping Test Kit' is suitable for offsite usage because of its simplicity and user friendliness. However, further improvement in adding the internal quality control may increase the test sensitivity and validity of the test results.
MATERIALS AND METHODS: Thirty units of FFP kept at -20°C were thawed using a 37°C water bath and immediately sampled for baseline Factor II (FII), Factor VIII (FVIII) and fibrinogen activity levels and sterility testing. Each unit was then divided into two smaller bags (i.e. Bag I and Bag II) and kept at 4°C. At 6 hours and Day 3, representative samples were taken from Bag I for coagulation factor activity assays, while at Day 5 representative samples were taken from Bag II for coagulation factor activity assays and sterility testing.
RESULTS: FII activities at the four time points were 73.43%, 73.73%, 71% and 69.8%, respectively, while FVIII activities were 177.63%, 144.37%, 80.8% and 70.97%, respectively. Fibrinogen levels at the four time points were 3.24 g/L, 3.24 g/L, 3.21 g/L and 3.20 g/L, respectively. All samples were free from microbial contamination even at Day 5.
CONCLUSION: The mean reduction in FII and fibrinogen activities on Day 5 was 5% and 1%, respectively. However, FVIII activity declined significantly by approximately 60% at Day 5. Despite these reductions, thawed plasma stored for up to 5 days at 4°C is still suitable for use as the coagulation factor activity levels still exceed the minimum release criteria recommended in quality assurance regulations.
MATERIALS & METHODS: Data from all OT in June and mid-July 2017 were collected from recipients' cards, transfusion request forms and patient's case files, regarding discipline involved, indications, time intervals from request of blood transfusion to the completion of OT on patients, monitoring of patients and adverse reactions.
RESULTS: A total of 1285 transfusion cases were identified during the study period. 216 (16.8%) cases were OT while the 1069 (83.2%) cases were non-OT. Surgery discipline has the highest (30.1%) OT. The indications of OT were acute clinical need: 82.9%, less acute clinical need: 13.9% and no clinical need: 3.2%. A huge delay (average: 5 hours 40 minutes) in starting transfusion after grouping and crossmatching (GXM) completion was noted. Besides, 25.9% cases took <4 hours to complete OT; 83.4% cases did not have proper transfusion monitoring and three transfusion reactions were reported.
DISCUSSION: Although most of the OT cases had appropriate clinical indications, the transfusion can be commenced earlier at day time rather than overnight. Cases without absolute indication should avoid OT. The poor monitoring of patient during OT had posed risks to patients' life if an adverse transfusion reaction happened. The major reason for OTs was a huge delay in starting transfusion after the GXM completion. The contravention of 4-hour infusion rule increased the patients' risk of developing bacterial sepsis. The practice of OT should be discouraged wherever possible except for clinically indicated cases.