Displaying all 9 publications

Abstract:
Sort:
  1. Ago C, Li G, Wu J, Md Yusoff NI
    Polymers (Basel), 2023 Jul 18;15(14).
    PMID: 37514465 DOI: 10.3390/polym15143077
    Hydrophobic aggregates have the great ability to prevent asphalt pavement roads from stripping-off of the asphalt in presence of water. In addition, they give the option to consume less asphalt and save cost. On the other hand, natural aggregates have been found to be non-renewable and rare. Geopolymer based artificial aggregates are great materials as they demonstrated to have exceptional features, such as high strength, superior durability, and greater resistance to fire exposure. In this study, a new hydrophobic geopolymer based aggregate has been produced with rice ash (RA) and fly ash as precursors as well as, Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) as activators. The mechanical properties combined with the softening coefficient, surface properties of samples, contact angle and adhesion were characterized as well as microstructure X-ray diffraction (XRD) and Scanning electron microscopy (SEM) test. The results indicate that the activators Na2SiO3/NaOH at a mix ratio of 1 have a suitable effect on the pores and the compressive strength of the new artificial aggregate most particularly sodium hydroxide. Nonetheless, it has been found that coating the artificial aggregate with asphalt showed a great improvement of the hydrophobic nature of the produced artificial aggregate based geopolymer. Hence, indicates the possibility of using it as recycle aggregate pavement. From a microstructure point, the hydrophobic nature of the new alkali-activated artificial aggregate can be improved by increasing the quantity of mullite in the mix proportion design.
  2. Zakaria NM, Yusoff NI, Hardwiyono S, Nayan KA, El-Shafie A
    ScientificWorldJournal, 2014;2014:594797.
    PMID: 25276854 DOI: 10.1155/2014/594797
    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.
  3. Hussin N, Mondello L, Costa R, Dugo P, Yusoff NI, Yarmo MA, et al.
    Nat Prod Commun, 2012 Jul;7(7):927-30.
    PMID: 22908584
    Patchouli essential oil can be obtained from fresh, dried and fermented plant material. It is a highly valuable product in the fragrance industry and its quality changes depending upon raw material age and oil storage. In this work, patchouli essential oils derived from different treatments have been subjected to GC-FID quantitative analysis using an internal standard (ISTD) method with response factors (RF). Samples were obtained from i) fresh plants; ii) hydrodistillation of one year mature and fermented plants; iii) hydrodistillation of one year mature plants; iv) commercial products from Indonesia and Malaysia. Linear Retention Indices (LRI) for both polar and non-polar GC-MS analyses were also measured as a tool for qualitative analysis towards a homologous series of C7-C30 n-alkanes. The results obtained confirmed that, in all samples, patchouli alcohol was the main volatile constituent, with higher amount in lab-scale produced oils, compared with commercial samples. Other major compounds, in lab oils and commercial samples respectively, were: delta-guaiene, alpha-guaiene, pogostol, seychellene and alpha-patchoulene. Another 36 compounds were also found.
  4. Zamir Hashmi SR, Khan MI, Khahro SH, Zaid O, Shahid Siddique M, Md Yusoff NI
    Materials (Basel), 2022 Nov 14;15(22).
    PMID: 36431509 DOI: 10.3390/ma15228024
    Carbon footprint reduction, recompense depletion of natural resources, as well as waste recycling are nowadays focused research directions to achieve sustainability without compromising the concrete strength parameters. Therefore, the purpose of the present study is to utilize different dosages of marble waste aggregates (MWA) and stone dust (SD) as a replacement for coarse and fine aggregate, respectively. The MWA with 10 to 30% coarse aggregate replacement and SD with 40 to 50% fine aggregate replacement were used to evaluate the physical properties (workability and absorption), durability (acid attack resistance), and strength properties (compressive, flexural, and tensile strength) of concrete. Moreover, statistical modeling was also performed using response surface methodology (RSM) to design the experiment, optimize the MWA and SD dosages, and finally validate the experimental results. Increasing MWA substitutions resulted in higher workability, lower absorption, and lower resistance to acid attack as compared with controlled concrete. However, reduced compressive strength, flexural strength, and tensile strength at 7-day and 28-day cured specimens were observed as compared to the controlled specimen. On the other hand, increasing SD content causes a reduction in workability, higher absorption, and lower resistance to acid attack compared with controlled concrete. Similarly, 7-day and 28-day compressive strength, flexural strength, and tensile strength of SD-substituted concrete showed improvement up to 50% replacement and a slight reduction at 60% replacement. However, the strength of SD substituted concrete is higher than controlled concrete. Quadratic models were suggested based on a higher coefficient of determination (R2) for all responses. Quadratic RSM models yielded R2 equaling 0.90 and 0.94 for compressive strength at 7 days and 28 days, respectively. Similarly, 0.94 and 0.96 for 7-day and 28-day flexural strength and 0.89 for tensile strength. The optimization performed through RSM indicates that 15% MWA and 50% SD yielded higher strength compared to all other mixtures. The predicted optimized data was validated experimentally with an error of less than 5%.
  5. Khan SU, Rahim A, Md Yusoff NI, Khan AH, Tabassum S
    Materials (Basel), 2023 Jul 27;16(15).
    PMID: 37569974 DOI: 10.3390/ma16155267
    There has been an increase in plastic production during the past decades, yet the recycling of plastic remains relatively low. Incorporating plastic in concrete can mitigate environmental pollution. The use of waste polyethylene terephthalate (PET) bottles as an aggregate weakens properties of concrete. An alternative is to use PET bottles as a binder in the mortar. The PET binder mixed with sand results in weak mortar. Marble and iron slag can enhance PET mortar properties by preventing alkali reactions. This study examines the mechanical and durability properties of PET mortar with different mixes. The mixes were prepared as plastic and marble (PM); plastic and iron slag (PI); plastic, sand, and marble (PSM); plastic, iron slag, and marble (PIM); and plastic, sand, and iron slag (PSI). PM with 30-45% plastic content had increased compressive and flexural strength up to 35.73% and 20.21%, respectively. PI with 30-35% plastic content showed strength improvements up to 29.19% and 5.02%, respectively. However, at 45% plastic content, strength decreased by 8.8% and 27.90%. PSM, PIM, and PSI specimens had nearly double the strength of ordinary Portland cement (OPC) mortar. The durability of PET mortar in chemical solutions, mainly 5% HCl and 20% NaOH, indicate that mass decreased after 3, 7, and 28 days. All specimens showed good resistance to HCl and NaCl solutions compared to OPC mortar. However, its resistance to NaOH is low compared to OPC mortar. PET mortar without cement showed higher strength and durability than cement mortar, making it suitable for paver tiles, drainage systems, and roads.
  6. Murugesu S, Ibrahim Z, Ahmed QU, Uzir BF, Nik Yusoff NI, Perumal V, et al.
    J Pharm Anal, 2019 Apr;9(2):91-99.
    PMID: 31011465 DOI: 10.1016/j.jpha.2018.11.001
    The present study used in vitro and in silico techniques, as well as the metabolomics approach to characterise α-glucosidase inhibitors from different fractions of Clinacanthus nutans. C. nutans is a medicinal plant belonging to the Acanthaceae family, and is traditionally used to treat diabetes in Malaysia. n-Hexane, n-hexane: ethyl acetate (1:1, v/v), ethyl acetate, ethyl acetate: methanol (1:1, v/v), and methanol fractions were obtained via partitioning of the 80% methanolic crude extract. The in vitro α-glucosidase inhibitory activity was analyzed using all the fractions collected, followed by profiling of the metabolites using liquid chromatography combined with mass spectrometry. The partial least square (PLS) statistical model was developed using the SIMCA P+14.0 software and the following four inhibitors were obtained: (1) 4,6,8-Megastigmatrien-3-one; (2) N-Isobutyl-2-nonen-6,8-diynamide; (3) 1',2'-bis(acetyloxy)-3',4'-didehydro-2'-hydro-β, ψ-carotene; and (4) 22-acetate-3-hydroxy-21-(6-methyl-2,4-octadienoate)-olean-12-en-28-oic acid. The in silico study performed via molecular docking with the crystal structure of yeast isomaltase (PDB code: 3A4A) involved a hydrogen bond and some hydrophobic interactions between the inhibitors and protein. The residues that interacted include ASN259, HID295, LYS156, ARG335, and GLY209 with a hydrogen bond, while TRP15, TYR158, VAL232, HIE280, ALA292, PRO312, LEU313, VAL313, PHE314, ARG315, TYR316, VAL319, and TRP343 with other forms of bonding.
  7. Al-Mansob RA, Ismail A, Yusoff NI, Rahmat RA, Borhan MN, Albrka SI, et al.
    PLoS One, 2017;12(2):e0171648.
    PMID: 28182724 DOI: 10.1371/journal.pone.0171648
    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.
  8. Murugesu S, Ibrahim Z, Ahmed QU, Nik Yusoff NI, Uzir BF, Perumal V, et al.
    Molecules, 2018 Sep 19;23(9).
    PMID: 30235889 DOI: 10.3390/molecules23092402
    BACKGROUND: Clinacanthus nutans (C. nutans) is an Acanthaceae herbal shrub traditionally consumed to treat various diseases including diabetes in Malaysia. This study was designed to evaluate the α-glucosidase inhibitory activity of C. nutans leaves extracts, and to identify the metabolites responsible for the bioactivity.

    METHODS: Crude extract obtained from the dried leaves using 80% methanolic solution was further partitioned using different polarity solvents. The resultant extracts were investigated for their α-glucosidase inhibitory potential followed by metabolites profiling using the gas chromatography tandem with mass spectrometry (GC-MS).

    RESULTS: Multivariate data analysis was developed by correlating the bioactivity, and GC-MS data generated a suitable partial least square (PLS) model resulting in 11 bioactive compounds, namely, palmitic acid, phytol, hexadecanoic acid (methyl ester), 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol, glycerol monostearate, alpha-tocospiro B, and stigmasterol. In-silico study via molecular docking was carried out using the crystal structure Saccharomyces cerevisiae isomaltase (PDB code: 3A4A). Interactions between the inhibitors and the protein were predicted involving residues, namely LYS156, THR310, PRO312, LEU313, GLU411, and ASN415 with hydrogen bond, while PHE314 and ARG315 with hydrophobic bonding.

    CONCLUSION: The study provides informative data on the potential α-glucosidase inhibitors identified in C. nutans leaves, indicating the plant's therapeutic effect to manage hyperglycemia.

  9. Abd Karim SB, Norman S, Koting S, Simarani K, Loo SC, Mohd Rahim FA, et al.
    Materials (Basel), 2023 Aug 08;16(16).
    PMID: 37629806 DOI: 10.3390/ma16165515
    The rapid economic and industrial growth experienced in the Asian region has significantly increased waste production, particularly single-use plastic. This surge in waste poses a significant challenge for these countries' municipal solid waste management systems. Consequently, there is a pressing need for progressive and effective solutions to address the plastic waste issue. One promising initiative involves utilizing used plastic to produce components for asphalt pavement. The concept of plastic road technology has gained traction in Asia, with 32 countries displaying varying levels of interest, ranging from small-scale laboratory experiments to large-scale construction projects. However, as a relatively new technology, plastic road implementation requires continuous and comprehensive environmental and health risk assessments to ascertain its viability as a reliable green technology. This review paper presents the current findings and potential implementation of plastic-modified asphalt in Asian countries, with particular attention given to its environmental and human health impacts. While plastic asphalt roads hold promise in waste reduction, improved asphalt properties, and cost savings, it is imperative to thoroughly consider the environmental and health impacts, quality control measures, recycling limitations, and long-term performance of this road construction material. Further research and evaluation are needed to fully understand the viability and sustainability of plastic asphalt roads. This will enable a comprehensive assessment of its potential benefits and drawbacks, aiding in developing robust guidelines and standards for its implementation. By addressing these considerations, it will be possible to optimize the utilization of plastic waste in road construction and contribute to a greener and more sustainable future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links