Displaying all 7 publications

Abstract:
Sort:
  1. Yusop RM, Unciti-Broceta A, Bradley M
    Bioorg Med Chem Lett, 2012 Sep 15;22(18):5780-3.
    PMID: 22901897 DOI: 10.1016/j.bmcl.2012.07.101
    Variation at the 3' position of fluorescein via Suzuki-Miyaura cross-coupling with aryl and heteroaryl moieties gave a family of anthofluoresceins whose spectroscopic properties were studied. The 1-methylindole derivative gave the highest quantum yield and was observed to behave as a molecular rotor, displaying marked variations in fluorescent intensities with viscosity and offering possible application in cellular sensing and fluorescent polarisation assays.
  2. Salimon J, Abdullah BM, Yusop RM, Salih N
    Chem Cent J, 2014;8(1):16.
    PMID: 24612780 DOI: 10.1186/1752-153X-8-16
    Vegetable oils have different unique properties owing to their unique chemical structure. Vegetable oils have a greater ability to lubricate and have higher viscosity indices. Therefore, they are being more closely examined as base oil for biolubricants and functional fluids. In spite of their many advantages, vegetable oils suffer from two major drawbacks of inadequate oxidative stability and poor low-temperature properties, which hinder their utilization as biolubricant base oils. Transforming alkene groups in fatty acids to other stable functional groups could improve the oxidative stability, whereas reducing structural uniformity of the oil by attaching alkyl side chains could improve the low-temperature performance. In that light, the epoxidation of unsaturated fatty acids is very interesting as it can provide diverse side chains arising from the mono- or di-epoxidation of the unsaturated fatty acid. Oxirane ring opening by an acid-catalyzed reaction with a suitable reagent provides interesting polyfunctional compounds.
  3. Salimon J, Abdullah BM, Yusop RM, Salih N, Yousif E
    Springerplus, 2013;2:429.
    PMID: 24083099 DOI: 10.1186/2193-1801-2-429
    Biolubricant base oils, 9,12-hydroxy-10,13-oleioxy-12-octadecanoic acid (HYOOA) was synthesized based on the esterification reaction of Monoepoxide linoleic acid 9(12)-10(13)-monoepoxy 12(9)-octadecanoic acid (MEOA) with oleic acid (OA) and catalyzed by p-Toluenesulfonic acid. The optimum conditions for the experiment using D-optimal design to obtain high yield% of 84.61, conversion% of 83.54 and lowest OOC% of 0.05 were predicted at OA/MEOA ratio of 0.2:1 (mol/mol), PTSA/MEOA ratio of 0.4:1 (mol/mol), reaction temperature at 110°C, and reaction time at 4.5 h. The FTIR peaks of HYOOA indicate the disappearance of the absorption band at 820 cm(-1), which belongs to the oxirane ring. (13)C and (1)H NMR spectra analyses confirmed the result of HYOOA with appearance carbon-ester (C = O) chemical shift at 174.1 ppm and at 4.06 ppm for (13)C and (1)H NMR respectively.
  4. Liew KH, Loh PL, Juan JC, Yarmo MA, Yusop RM
    ScientificWorldJournal, 2014;2014:796196.
    PMID: 25054185 DOI: 10.1155/2014/796196
    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4-10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.
  5. Clavadetscher J, Hoffmann S, Lilienkampf A, Mackay L, Yusop RM, Rider SA, et al.
    Angew Chem Int Ed Engl, 2016 12 12;55(50):15662-15666.
    PMID: 27860120 DOI: 10.1002/anie.201609837
    The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has proven to be a pivotal advance in chemical ligation strategies with applications ranging from polymer fabrication to bioconjugation. However, application in vivo has been limited by the inherent toxicity of the copper catalyst. Herein, we report the application of heterogeneous copper catalysts in azide-alkyne cycloaddition processes in biological systems ranging from cells to zebrafish, with reactions spanning from fluorophore activation to the first reported in situ generation of a triazole-containing anticancer agent from two benign components, opening up many new avenues of exploration for CuAAC chemistry.
  6. Yousif E, Ahmed DS, Ahmed AA, Hameed AS, Muhamed SH, Yusop RM, et al.
    Environ Sci Pollut Res Int, 2019 Apr;26(10):9945-9954.
    PMID: 30739295 DOI: 10.1007/s11356-019-04323-x
    Although plastic induces environmental damages, almost the consumption of poly(vinyl chloride) never stops increasing. Therefore, this work abstracted by two parts, first, synthesis of Schiff bases 1-4 compounds through the reaction of amino group with appropriate aromatic aldehyde, reaction of PVC with Schiff bases compounds 1-4 in THF to form a new modified PVC-1, PVC-2, PVC-3, and PVC-4. The structures of Schiff bases 1-4 and the modified PVC-1, PVC-2, PVC-3, and PVC-4 have been characterized by different spectroscopic analyses. Second, the influence of introducing 4-amino-1,2,4-triazole as a pendent groups into PVC chain investigated on photostability rules of tests. The modified polymers photostability investigated by observing indices (ICO, Ipo, and IOH), weight loss, UV and morphological studies, and all results obtained indicated that PVC-1, PVC-2, PVC-3 and PVC-4 gave lower growth rate of ICO, IPO, and IOH through UV exposure time. The photostability are given as PVC-4 
  7. Yousif E, Ahmed DS, Ahmed A, Abdallh M, Yusop RM, Mohammed SA
    Environ Sci Pollut Res Int, 2019 Sep;26(25):26381-26388.
    PMID: 31290046 DOI: 10.1007/s11356-019-05784-w
    A new Schiff base containing 1,2,4-triazole ring system (L) was synthesized and confirmed by 1HNMR, FTIR spectroscopy. The chemical modification of PVC with a new Schiff base (L) was synthesized to produce a homogenous blend (PVC-L). A homogenous blend (PVC-L) was added to copper chloride to produce PVC-L-Cu (II). The PVC films had been irradiated with ultraviolet light for a long period and confirmed by FTIR spectroscopy and weight loss; the surface morphology was inspected by scanning electron microscopy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links