The Nipah virus outbreak represented one of several bat-derived paramyxoviruses that has emerged during the last decade to cause severe human and animal disease. The pathogenesis of Nipah infection is associated with its ability to infect blood vessels and extravascular parenchyma in many organs, particularly in the central nervous system. The clinical manifestations of acute Nipah infection range from fever and mild headache to a severe acute encephalitic syndrome in which there is a high mortality. Much remains to be understood about this new disease, including its intriguing ability to cause relapsing encephalitis in some survivors. This review provides an overview of the Nipah outbreak, focussing on what is presently known about it as an infectious disease, including the clinical aspects, pathology and pathogenesis.
Microcystins (MCs) are secondary metabolites produced by cyanobacteria and have been well-documented in temperate and tropical regions. However, knowledge of the production of MCs in extremely cold environments is still in its infancy. Recently, examination of 100-year-old Antarctic cyanobacterial mats collected from Ross Island and the McMurdo Ice Shelf during Captain R.F. Scott's Discovery Expedition revealed that the presence of MCs in Antarctica is not a new phenomenon. Here, morphological and molecular phylogenetic analyses are used to identify a new microcystin-producing freshwater cyanobacterium, Anagnostidinema pseudacutissimum. The strain was isolated from a deep-frozen (-15 °C) sample collected from a red-brown cyanobacterial mat in a frozen pond at Cape Crozier (Ross Island, continental Antarctica) in 1984-1985. Amplification of the mcyE gene fragment involved in microcystin biosynthesis from A. pseudacutissimum confirmed that it is identical to the sequence from other known microcystin-producing cyanobacteria. Analysis of extracts from this A. pseudacutissimum strain by HPLC-MS/MS confirmed the presence of MC-LR and -YR at concentrations of 0.60 μg/L and MC-RR at concentrations of 0.20 μg/L. This is the first report of microcystin production from a species of Anagnostidinema from Antarctica.
The genetically polymorphic cytochrome P450 (CYP) 2A6 is the major nicotine-oxidase in humans that may contribute to nicotine dependence and cancer susceptibility. The authors investigated the types and frequencies of CYP2A6 alleles in the three major ethnic groups in Malaysia and CYP2A6*1A, CYP2A6*1B, CYP2A6*1x2, CYP2A6*2, CYP2A6*3, CYP2A6*4, CYP2A6*5, CYP2A6*7, CYP2A6*8 and CYP2A6*10 were determined by allele-specific polymerase chain reaction (PCR) in 270 Malays, 172 Chinese and 174 Indians. Except for CYP2A6*2 and *3 that were not detected in the Malays and Chinese, all the other alleles were detected. Frequencies for the CYP2A6*4 allele were 7, 5 and 2%, respectively, in Malays, Chinese and Indians. A statistically significant high frequency of the duplicated CYP2A6*1x2 allele occurred among Chinese. Among Malays and Chinese, the most common allele was CYP2A6*1B, but it was CYP2A6*1A among Indians. These ethnic difference in frequencies suggested that further studies are required to investigate the implications on diseases such as cancer and smoking behaviour among these major ethnic groups in Malaysia.
Utilizing agro-waste material such as rice husk (RH) and coco peat (CP) reinforced with thermoplastic resin to produce low-cost green composites is a fascinating discovery. In this study, the effectiveness of these blended biocomposites was evaluated for their physical, mechanical, and thermal properties. Initially, the samples were fabricated by using a combination of melt blend internal mixer and injection molding techniques. Increasing in RH content increased the coupons density. However, it reduced the water vapor kinetics sorption of the biocomposite. Moisture absorption studies disclosed that water uptake was significantly increased with the increase of coco peat (CP) filler. It showed that the mechanical properties, including tensile modulus, flexural modulus, and impact strength of the 15% RH-5% CP reinforced acrylonitrile-butadiene-styrene (ABS), gave the highest value. Results also revealed that all RH/CP filled composites exhibited a brittle fracture manner. Observation on the tensile morphology surfaces by using a scanning electron microscope (SEM) affirmed the above finding to be satisfactory. Therefore, it can be concluded that blend-agriculture waste reinforced ABS biocomposite can be exploited as a biodegradable material for short life engineering application where good mechanical and thermal properties are paramount.
Twenty cyanobacterial strains of eight morphospecies isolated from deep-frozen (-15 °C) mat samples originally collected on Ross Island, in Victoria Land, and on the McMurdo Ice Shelf were screened for the presence of genes encoding for production of anatoxins, cylindrospermopsin, microcystin/nodularin and saxitoxin. One strain of each of Microcoleus autumnalis and Phormidesmis priestleyi and two strains of Wilmottia murrayi were found to produce microcystin. No toxin production was detected in the other 16 strains representing five species. The four toxin-producing strains were characterised using both morphological and molecular approaches. Phylogenetic analyses using partial 16S rRNA sequences were consistent with the morphological identification of all four strains. They were all found to contain a fragment of the mcyE gene, which is involved in microcystin biosynthesis. ELISA analysis of extracts from cultures of these strains confirmed the presence of low concentrations of microcystin: 0.35 μg/L in M. autumnalis, <0.15 μg/L in P. priestleyi, 1.60 μg/L in W. murrayi strain 1 and 0.9 μg/L in W. murrayi strain 2. This study includes the first report of microcystin synthesis by W. murrayi.
This study was initiated following the serendipitous discovery of a unialgal culture of a Stichococcus-like green alga (Chlorophyta) newly isolated from soil collected on Signy Island (maritime Antarctica) in growth medium supplemented with 100 µg/mL cycloheximide (CHX, a widely used antibiotic active against most eukaryotes). In order to test the generality of CHX resistance in taxa originally identified as members of Stichococcus (the detailed taxonomic relationships within this group of algae have been updated since our study took place), six strains were studied: two strains isolated from recent substrate collections from Signy Island (maritime Antarctica) ("Antarctica" 1 and "Antarctica" 2), one isolated from this island about 50 years ago ("Antarctica" 3) and single Arctic ("Arctic"), temperate ("Temperate") and tropical ("Tropical") strains. The sensitivity of each strain towards CHX was compared by determining the minimum inhibitory concentration (MIC), and growth rate and lag time when exposed to different CHX concentrations. All strains except "Temperate" were highly resistant to CHX (MIC > 1000 µg/mL), while "Temperate" was resistant to 62.5 µg/mL (a concentration still considerably greater than any previously reported for algae). All highly resistant strains showed no significant differences in growth rate between control and treatment (1000 µg/mL CHX) conditions. Morphological examination suggested that four strains were consistent with the description of the species Stichococcus bacillaris while the remaining two conformed to S. mirabilis. However, based on sequence analyses and the recently available phylogeny, only one strain, "Temperate", was confirmed to be S. bacillaris, while "Tropical" represents the newly erected genus Tetratostichococcus, "Antarctica 1" Tritostichococcus, and "Antarctica 2", "Antarctica 3" and "Arctic" Deuterostichococcus. Both phylogenetic and CHX sensitivity analyses suggest that CHX resistance is potentially widespread within this group of algae.
Between February and April, 1999, an outbreak of viral encephalitis occurred among pig-farmers in Malaysia. We report findings for the first three patients who died.
From April through June 1997, 29 previously healthy children aged <6 years (median, 1.5 years) in Sarawak, Malaysia, died of rapidly progressive cardiorespiratory failure during an outbreak of hand, foot, and mouth disease caused primarily by enterovirus 71 (EV71). The case children were hospitalized after a short illness (median duration, 2 days) that usually included fever (in 100% of case children), oral ulcers (66%), and extremity rashes (62%). The illness rapidly progressed to include seizures (28%), flaccid limb weakness (17%), or cardiopulmonary symptoms (of 24 children, 17 had chest radiographs showing pulmonary edema, and 24 had echocardiograms showing left ventricular dysfunction), resulting in cardiopulmonary arrest soon after hospitalization (median time, 9 h). Cardiac tissue from 10 patients showed normal myocardium, but central nervous system tissue from 5 patients showed inflammatory changes. Brain-stem specimens from 2 patients were available, and both specimens showed extensive neuronal degeneration, inflammation, and necrosis, suggesting that a central nervous system infection was responsible for the disease, with the cardiopulmonary dysfunction being neurogenic in origin. EV71 and possibly an adenovirus, other enteroviruses, or unknown cofactors are likely responsible for this rapidly fatal disease.
During 10-19 March 1999, 11 workers in 1 of 2 Singaporean abattoirs developed Nipah-virus associated encephalitis or pneumonia, resulting in 1 fatality. A case-control study was conducted to determine occupational risk factors for infection. Case patients were abattoir A workers who had anti-Nipah IgM antibodies; control subjects were randomly selected abattoir A workers who tested negative for anti-Nipah IgM. All 13 case patients versus 26 (63%) of 41 control subjects reported contact with live pigs (P=.01). Swine importation from Malaysian states concurrently experiencing a Nipah virus outbreak was banned on 3 March 1999; on 19 March 1999, importation of Malaysian pigs was banned, and abattoirs were closed. No unusual illnesses among pigs processed during February-March were reported. Contact with live pigs appeared to be the most important risk factor for human Nipah virus infection. Direct contact with live, potentially infected pigs should be minimized to prevent transmission of this potentially fatal zoonosis to humans.
A paramyxovirus virus termed Nipah virus has been identified as the etiologic agent of an outbreak of severe encephalitis in people with close contact exposure to pigs in Malaysia and Singapore. The outbreak was first noted in late September 1998 and by mid-June 1999, more than 265 encephalitis cases, including 105 deaths, had been reported in Malaysia, and 11 cases of encephalitis or respiratory illness with one death had been reported in Singapore. Electron microscopic, serologic, and genetic studies indicate that this virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus. We suggest that these two viruses are representative of a new genus within the family Paramyxoviridae. Like Hendra virus, Nipah virus is unusual among the paramyxoviruses in its ability to infect and cause potentially fatal disease in a number of host species, including humans.