Displaying all 12 publications

Abstract:
Sort:
  1. Lau KW, Chen CD, Lee HL, Izzul AA, Asri-Isa M, Zulfadli M, et al.
    Trop Biomed, 2013 Mar;30(1):36-45.
    PMID: 23665706 MyJurnal
    The aim of the present study was to determine the vertical distribution and abundance of Aedes mosquitoes in multiple storey buildings in Selangor and Kuala Lumpur, Malaysia. Ovitrap surveillance was conducted for 4 continuous weeks in multiple storey buildings in 4 residential areas located in Selangor [Kg. Baiduri (KB)] and Kuala Lumpur [Student Hostel of University of Malaya (UM), Kg. Kerinchi (KK) and Hang Tuah (HT)]. The results implied that Aedes mosquitoes could be found from ground floor to highest floor of multiple storey buildings and data from different elevation did not show significant difference. Ovitrap index for UM, KB, HT and KK ranged from 0 - 29.17%, 0 - 55.56%, 8.33 - 83.33% and 0 - 91.17% respectively. Aedes aegypti and Aedes albopictus were found breeding in HT, KK and KB; while only Ae. albopictus was obtained from UM. The results indicate that the invasion of Aedes mosquitoes in high-rise apartments could facilitate the transmission of dengue virus and new approaches to vector control in this type of residential area should be developed.
    Matched MeSH terms: Aedes/classification
  2. Afizah AN, Mahirah MN, Azahari AH, Asuad MK, Nazni WA, Lee HL
    PMID: 26863856
    Ovitrap surveillance was conducted in 2012 and 2006 in Malay and Aboriginal Villages on Carey Island. In each village, standard ovitraps were placed indoors and outdoors at randomly selected houses/locations. All L3 larvae recovered were identified up to species level. Results demonstrated that only larvae of Aedes albopictus were found in all the positive ovitraps placed indoors and outdoors. In 2012, a high ovitrap index (OI) of 66.7% indoor and 84.0% outdoor in the Malay Village; and 62.5% indoor and 88.0% outdoor in Aboriginal Village with an apparent absence of Aedes aegypti. In 2006, a 100% OI was recorded in all ovitraps set indoors and outdoors in both villages.
    Matched MeSH terms: Aedes/classification
  3. Jasper M, Schmidt TL, Ahmad NW, Sinkins SP, Hoffmann AA
    Mol Ecol Resour, 2019 Sep;19(5):1254-1264.
    PMID: 31125998 DOI: 10.1111/1755-0998.13043
    Understanding past dispersal and breeding events can provide insight into ecology and evolution and can help inform strategies for conservation and the control of pest species. However, parent-offspring dispersal can be difficult to investigate in rare species and in small pest species such as mosquitoes. Here, we develop a methodology for estimating parent-offspring dispersal from the spatial distribution of close kin, using pairwise kinship estimates derived from genome-wide single nucleotide polymorphisms (SNPs). SNPs were scored in 162 Aedes aegypti (yellow fever mosquito) collected from eight close-set, high-rise apartment buildings in an area of Malaysia with high dengue incidence. We used the SNPs to reconstruct kinship groups across three orders of kinship. We transformed the geographical distances between all kin pairs within each kinship category into axial standard deviations of these distances, then decomposed these into components representing past dispersal events. From these components, we isolated the axial standard deviation of parent-offspring dispersal and estimated neighbourhood area (129 m), median parent-offspring dispersal distance (75 m) and oviposition dispersal radius within a gonotrophic cycle (36 m). We also analysed genetic structure using distance-based redundancy analysis and linear regression, finding isolation by distance both within and between buildings and estimating neighbourhood size at 268 individuals. These findings indicate the scale required to suppress local outbreaks of arboviral disease and to target releases of modified mosquitoes for mosquito and disease control. Our methodology is readily implementable for studies of other species, including pests and species of conservation significance.
    Matched MeSH terms: Aedes/classification*
  4. Ho LY, Loh TS, Yam LA
    Trop Biomed, 2014 Sep;31(3):441-8.
    PMID: 25382470 MyJurnal
    In this study, 13 weeks (October to December 2012) of ovitrap surveillance was conducted in two suburban residential areas in Kampar town, Perak. A total of 17,310 Aedes mosquitoes were found in Taman Kampar Jaya, whereas Taman Juloong recorded a higher number at 19,042. Less than 1% of these were identified as Aedes aegypti, with the remaining confirmed as Aedes albopictus. The female Ae. albopictus were subsequently subjected to WHO standard diagnostic test kits against two pyrethroids (0.05% deltamethrin and 0.75% permethrin) and two organophosphates (1% fenitrothion and 5% malathion). The Ae. albopictus from both research sites were the most susceptible to deltamethrin, recording KT50 and KT95 response values of 15.84 minutes and 16.18 minutes; and 48.18 minutes and 49.44 minutes respectively. This was followed by permethrin (20.57 minutes and 17.52 minutes; 29.54 minutes and 54.54 minutes) and malathion (48.46 minutes and 62.69 minutes; 87.72 minutes and 141.04 minutes). Fenitrothion was found to be least effective towards Ae. albopictus; recording KT50 and KT95 response values of 150.29 minutes and 293.41 minutes for Taman Kampar Jaya, and 203.32 minutes and 408.07 minutes respectively for Taman Juloong. All tested Ae. albopictus showed 100% mortality after 24 hours post exposure. As both residential areas were fogged periodically by the municipal council; alternating between organophosphates and pyrethroids, thus, constant monitoring is crucial in light of the emergence of resistance noted in Ae. albopictus towards fenitrothion.
    Matched MeSH terms: Aedes/classification
  5. Chen CD, Azahari AH, Saadiyah I, Lee HL
    Trop Biomed, 2007 Dec;24(2):89-91.
    PMID: 18209714 MyJurnal
    Photon (light) technology has already been widely used in make-up, medical treatment etc, but repelling mosquitoes by photon technology is an innovation. The objective of this study was to determine the efficacy of a mosquito repelling lamp, E Da under indoor conditions. E Da lamp is a lamp coated with yellow luminous pigment on the inner part of the glass bulb of the lamp which is used to screen out the UV radiation, and when it is turned on, the yellow illuminating wavelength will drive the mosquitoes away. The tests were conducted inside 2 cabins measuring 8' X 8' X 20'. The mosquito population was estimated by using the Bare Leg Catch (BLC) techniques. For treated test, E Da lamp was placed indoor 2 - 3 meters away from a human bait. Another cabin without the lamp was used as untreated control. BLC was conducted in both sites simultaneously. The mosquitoes collected in this study were solely those of Culex quinquefasciatus and Aedes albopictus. There was an 91.34% reduction of Cx. quinquefasciatus population in the treated test compared with the untreated cabin during the 4 hours catches (p < 0.05). E Da mosquito repelling lamp used in this study exerted repellency effect against the mosquitoes especially Cx. quinquefasciatus.
    Matched MeSH terms: Aedes/classification
  6. Chen CD, Nazni WA, Lee HL, Sofian-Azirun M
    Trop Biomed, 2005 Dec;22(2):207-16.
    PMID: 16883289 MyJurnal
    Larvae obtained from Taman Samudera (Gombak, Selangor), Kampung Banjar (Gombak, Selangor), Taman Lembah Maju (Cheras, Kuala Lumpur) and Kampung Baru (City centre, Kuala Lumpur) were bioassayed with diagnostic dosage (0.012 mg/L) and operational dosage (1 mg/L) of temephos. All strains of Aedes aegypti and Aedes albopictus showed percentage mortality in the range of 16.00 to 59.05 and 6.4 to 59.50 respectively, after 24 hours. LT50 values for the 6 strains of Ae. aegypti and Ae. albopictus were between 41.25 to 54.42 minutes and 52.67 to 141.76 minutes respectively, and the resistance ratio for both Aedes species were in the range of 0.68 to 1.82 when tested with operational dosage, 1 mg/L temephos. These results indicate that Aedes mosquitoes have developed some degree of resistance. However, complete mortality for all strains were achieved after 24 hours when tested against 1 mg/L temephos.
    Matched MeSH terms: Aedes/classification
  7. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005546.
    PMID: 28410388 DOI: 10.1371/journal.pntd.0005546
    BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range.

    METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.

    CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.

    Matched MeSH terms: Aedes/classification*
  8. Brown R, Hing CT, Fornace K, Ferguson HM
    Parasit Vectors, 2018 Jun 14;11(1):346.
    PMID: 29898780 DOI: 10.1186/s13071-018-2926-1
    BACKGROUND: Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses).

    RESULTS: Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source.

    CONCLUSIONS: RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home.

    Matched MeSH terms: Aedes/classification
  9. Saifur RG, Hassan AA, Dieng H, Ahmad H, Salmah MR, Satho T, et al.
    J Am Mosq Control Assoc, 2012 Jun;28(2):84-92.
    PMID: 22894118
    It is important to obtain frequent measurements of the abundance, distribution, and seasonality of mosquito vectors to determine the risk of disease transmission. The number of cases of dengue infection has increased in recent years on Penang Island, Malaysia, with recurring epidemics. However, ongoing control attempts are being critically hampered by the lack of up-to-date information regarding the vectors. To overcome this problem, we examined the current situation and distribution of dengue vectors on the island. Residences throughout the urban, suburban, and rural areas were inspected through wet and dry seasons between February 2009 and February 2010. Two vectors were encountered in the survey, with Aedes aegypti present in especially high numbers mostly in urban areas. Similar observations were noted for Ae. albopictus in rural areas. The former species was more abundant in outdoor containers, while the latter showed almost equivalent abundance both outdoors and indoors. The dengue virus was active in both urban and rural areas, and the number of cases of infection was higher in areas where Ae. aegypti was predominant. The abundance of immature Ae. albopictus was positively correlated with rainfall (r2 = 0.461; P < 0.05), but this was not the case for Ae. aegypti. For both species, the size of immature populations tended to increase with increasing intensity of rain, but heavy rains resulted in population loss. In addition to updating data regarding the larval habitats and locations (outdoors and indoors), this study highlighted the importance of spatial vector control stratification, which has the potential to reduce costs in control programs.
    Matched MeSH terms: Aedes/classification
  10. Chen CD, Nazni WA, Lee HL, Sofian-Azirun M
    Trop Biomed, 2005 Dec;22(2):195-206.
    PMID: 16883288 MyJurnal
    Larvae of Aedes aegypti and Aedes albopictus obtained from 6 consecutive ovitrap surveillance (OS) in Taman Samudera and Kg. Banjar were evaluated for their susceptibility to temephos. Larval bioassays were carried out in accordance with WHO standard methods, with diagnostic dosage (0.012 mg/L) and operational dosage (1 mg/L) of temephos respectively. Aedes aegypti and Ae. albopictus obtained from six OS in Taman Samudera showed resistance to diagnostic dosage of temephos with percentage mortality between 5.3 to 72.0 and 9.3 to 56.0, respectively, while Ae. aegypti and Ae. albopictus obtained from Kg. Banjar showed resistance to temephos with percentage mortality between 16.0 to 72.0 and 0 to 50.6, respectively. Only two strains of Ae. aegypti from Kg. Banjar were susceptible to temephos with 93.3% (OS 2) and 100% (OS 3) mortality. The 50% mortality at lethal time (LT50) for all strains of Ae. aegypti and Ae. albopictus tested against operational dosage of temephos showed range between 36.07 to 75.69 minutes and 58.65 to 112.50 minutes, respectively, and complete mortality was achieved after 24 hours. Our results indicated that there is weekly variations of the resistance status for Ae. aegypti and Ae. albopictus. Aedes susceptibility to temephos is changing from time to time in these two study sites. It is essential to continue monitoring the resistance of this vector to insecticides in order to ensure the efficiency of program aimed at vector control and protection of human health.
    Matched MeSH terms: Aedes/classification
  11. Rozilawati H, Lee HL, Mohd Masri S, Mohd Noor I, Rosman S
    Trop Biomed, 2005 Dec;22(2):143-8.
    PMID: 16883280 MyJurnal
    Field bioefficacy of residual-sprayed deltamethrin against Aedes vectors was evaluated in an urban residential area in Kuala Lumpur. The trial area consisted of single storey wood-brick houses and a block of flat. The houses were treated with outdoor residual spraying while the flat was used as an untreated control. Initial pre-survey using ovitrap surveillance indicated high Aedes population in the area. Deltamethrin WG was sprayed at a dosage of 25mg/m2 using a compression sprayer. The effectiveness of deltamethrin was determined by wall bioassay and ovitrap surveillance. The residual activity of 25mg/m2 deltamethrin was still effective for 6 weeks after treatment, based on biweekly bioassay results. Bioassay also indicated that both Aedes aegypti and Aedes albopictus were more susceptible on the wooden surfaces than on brick. Aedes aegypti was more susceptible than Ae. albopictus against deltamethrin. Residual spraying of deltamethrin was not very effective against Aedes in this study since the Aedes population in the study area did not reduce as indicated by the total number of larvae collected using the ovitrap (Wilcoxon Sign Test, p> 0.05). Further studies are required to improve the effectiveness of residual spraying against Aedes vectors.
    Matched MeSH terms: Aedes/classification
  12. Ong SQ, Ahmad H, Nair G, Isawasan P, Majid AHA
    Sci Rep, 2021 05 10;11(1):9908.
    PMID: 33972645 DOI: 10.1038/s41598-021-89365-3
    Classification of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) by humans remains challenging. We proposed a highly accessible method to develop a deep learning (DL) model and implement the model for mosquito image classification by using hardware that could regulate the development process. In particular, we constructed a dataset with 4120 images of Aedes mosquitoes that were older than 12 days old and had common morphological features that disappeared, and we illustrated how to set up supervised deep convolutional neural networks (DCNNs) with hyperparameter adjustment. The model application was first conducted by deploying the model externally in real time on three different generations of mosquitoes, and the accuracy was compared with human expert performance. Our results showed that both the learning rate and epochs significantly affected the accuracy, and the best-performing hyperparameters achieved an accuracy of more than 98% at classifying mosquitoes, which showed no significant difference from human-level performance. We demonstrated the feasibility of the method to construct a model with the DCNN when deployed externally on mosquitoes in real time.
    Matched MeSH terms: Aedes/classification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links