Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Reid JA
    J Med Entomol, 1966 Dec;3(3):327-31.
    PMID: 5986753
    Matched MeSH terms: Anopheles/classification*
  2. Reid JA
    J Med Entomol, 1967 May;4(2):175-9.
    PMID: 6052125
    Matched MeSH terms: Anopheles/classification*
  3. Reid JA
    Med J Malaysia, 1980 Jun;34(4):399-402.
    PMID: 7219271
    Facts are presented which suggest that mosquitoes of the Anopheles barbirostris species group that gave me a very uncomfortable night in 1941, whilst serving with the Volunteer forces, were probably A. donaldi. This species is now known to be a vector of human filariasis and probably malaria. Some of the steps are described by which I was led, sixteen years later, to recognise and later name donaldi as a new species. Reasons are given for thinking that around 1918 A. donaldi was present in some numbers at the railway town of Gemas where malaria was a serious problem. H.P. Hacker made a survey at Gemas in 1918 and though the principal vector was probably A. maculatus, 'umbrosus' and 'barbirostris' were the commonest larvae he found.
    Matched MeSH terms: Anopheles/classification*
  4. Rohani A, Chan ST, Abdullah AG, Tanrang H, Lee HL
    Trop Biomed, 2008 Dec;25(3):232-6.
    PMID: 19287362
    The adult population and species composition of mosquitoes collected in Ranau, Sabah are described. A total of 5956 mosquitoes representing 8 genera and 41 species were collected using human landing catch, indoor and outdoor. Anopheles maculatus was the most common species (15.6%) followed by Culex quinquefasciatus (12.8%), Culex pseudovishnui (12.1%), Anopheles balabacensis (11.1%), Culex vishnui (9.7%), Aedes vexans (9.6%), Culex tritaeniorhyncus (6.6%), Anopheles donaldi (5.6%) and others in very small percentage.
    Matched MeSH terms: Anopheles/classification
  5. Foley DH, Rueda LM, Wilkerson RC
    J Med Entomol, 2007 Jul;44(4):554-67.
    PMID: 17695008
    To advance our limited knowledge of global mosquito biogeography, we analyzed country occurrence records from the Systematic Catalog of the Culicidae (http://www.mosquitocatalog. org/main.asp), and we present world maps of species richness and endemism. A latitudinal biodiversity gradient was observed, with species richness increasing toward the equator. A linear log-log species (y)-area (x) relationship (SAR) was found that we used to compare observed and expected species densities for each country. Brazil, Indonesia, Malaysia, and Thailand had the highest numbers of species, and Brazil also had the highest taxonomic output and number of type locations. Brazil, Australia, the Philippines, and Indonesia had the highest numbers of endemic species, but excluding small island countries, Panama, French Guiana, Malaysia, and Costa Rica had the highest densities of total species and endemic species. Globally, 50% of mosquito species are endemic. Island countries had higher total number of species and higher number of endemic species than mainland countries of similar size, but the slope of the SAR was similar for island and mainland countries. Islands also had higher numbers of publications and type locations, possibly due to greater sampling effort and/or species endemism on islands. The taxonomic output was lowest for some countries in Africa and the Middle East. A consideration of country estimates of past sampling effort and species richness and endemism is proposed to guide mosquito biodiversity surveys. For species groups, we show that the number of species of Anopheles subgenus Anopheles varies with those of subgenus Cellia in a consistent manner between countries depending on the region. This pattern is discussed in relation to hypotheses about the historical biogeography and ecology of this medically important genus. Spatial analysis of country species records offers new insight into global patterns of mosquito biodiversity and survey history.
    Matched MeSH terms: Anopheles/classification*
  6. Kittayapong P, Clark JM, Edman JD, Lavine BK, Marion JR, Brooks M
    J Med Entomol, 1993 Nov;30(6):969-74.
    PMID: 8271255
    Anopheles maculatus Theobald sensu lato is a species complex now consisting of eight sibling species; An. maculatus is still represented by two cytologically distinct forms; i.e., the widely distributed sensu strictu or B, and E from southern Thailand and adjacent areas in northern Malaysia. Cuticular lipid profiles in conjunction with principal component analysis was used to separate An. maculatus form E from sensu stricto form B in a preliminary survey of the An. maculatus complex at five locations spanning peninsular Malaysia. The relative rank orders, from the areas of the five gas chromatographic peaks used to determine lipid differences for specimens from peninsular Malaysia, matched well with those from cytogenetically identified colony specimens of An. maculatus forms B and E. The two-dimensional principal component pattern of specimens identified as form E was highly clumped, which indicated that very similar cuticular lipids were present within this putative malaria vector. Both forms coexisted in peninsular Malaysia, but form E may be dominant except in the south.
    Matched MeSH terms: Anopheles/classification
  7. Baimai V, Green CA, Andre RG, Harrison BA, Peyton EL
    PMID: 6543543
    Recent studies on cytogenetics, behavioral, geographical and distinct morphological characters on adult, pupal and larval stages have revealed that "balabacensis" is a species complex. Anopheles dirus the mainland species, is distributed widely in Thailand and is renowned for its role as primary vector of human malarial parasites. Further, evidence from cytogenetic and taxonomic studies suggests that "An. dirus" is a species complex comprising at least four distinct species provisionally designated: dirus A, B, C and D. These cryptic species are distinguishable only partially morphologically, but can be separated on the basis of metaphase chromosomes using the Giemsa and Hoechst 33258 staining techniques. Apparently, these siblings show distinct patterns of geographic distribution in Thailand and Peninsular Malaysia. The recognition of dirus as a complex of species in Thailand and Peninsular Malaysia requires a re-evaluation of the role that the individual members of this complex have in the transmission of malaria parasites in this region. Cytological analysis of gene rearrangements in ovarian polytene chromosomes has shown that An. maculatus is a sibling-species complex consisting of at least four species in Thailand provisionally designated: maculatus A, B, C and G. These siblings are sympatric in some populations. Furthermore, species B is so highly polymorphic for chromosome rearrangements that four geographic forms can be recognized. It is not known whether these four forms are subspecies or yet further species within the species B complex. These sibling-species must be differentiated in order to understand any differential capabilities in their transmission of human malaria parasites. Anopheles nivipes was elevated from synonymy under An. philippinensis to full species status by Reid, a decision recently confirmed by cross mating experiments. The Thailand Malaria Division does not differentiate these two species and only identifies An. philippinensis, yet, An. nivipes is by far the most common of the two species in Thailand. Furthermore, preliminary surveys of the ovarian polytene chromosomes of several widely separated populations of An. nivipes in Thailand have revealed at least two distinct chromosomal types of nivipes based on fixed inversions on the X chromosomes.
    Matched MeSH terms: Anopheles/classification
  8. Lau YL, Lee WC, Chen J, Zhong Z, Jian J, Amir A, et al.
    PLoS One, 2016;11(6):e0157893.
    PMID: 27347683 DOI: 10.1371/journal.pone.0157893
    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics.
    Matched MeSH terms: Anopheles/classification
  9. Hempolchom C, Yasanga T, Wijit A, Taai K, Dedkhad W, Srisuka W, et al.
    Parasitol Res, 2017 Jan;116(1):143-153.
    PMID: 27752768
    Antennal sensilla were first investigated in the eight medically and veterinary important Anopheles mosquito species (Anopheles argyropus, Anopheles crawfordi, Anopheles nigerrimus, Anopheles nitidus, Anopheles paraliae (= Anopheles lesteri), Anopheles peditaeniatus, Anopheles pursati, and Anopheles sinensis) of the Hyrcanus Group in Thailand, using scanning electron microscopy (SEM). Four types of sensilla, including sensilla chaetica (large and small), sensilla trichodea (sharp- and blunt-tipped), sensilla basiconica or grooved pegs (types I, II, and III), and sensilla coeloconica (large and small), were observed on the female antennae of the eight species. The greatest number of sensilla found along the flagellum of all the Anopheles species consisted of sensilla trichodea. Grooved pegs type II were not found on the antennae of An. peditaeniatus. Interestingly, clusters of 10-15 grooved pegs type III, with blunt-tipped and unevenly grooved-lengthwise sensilla, and a sunken group of 7-12 grooved pegs type III, with slightly curved and point-tipped sensilla, were found distally on flagellomeres 3-7 of An. argyropus and An. peditaeniatus, respectively. In addition, the key for species identification, based on fine structure and morphometrics of antennal sensilla among the eight species, was constructed and differentiated successfully. However, in order to focus intensively on the exact function of these sensilla, further electrophysiological study is needed in understanding their significant role in mosquito behavior, especially when these insects seek hosts for transmitting pathogens to humans.
    Matched MeSH terms: Anopheles/classification
  10. Sallum MA, Peyton EL, Wilkerson RC
    Med Vet Entomol, 2005 Jun;19(2):158-99.
    PMID: 15958025
    Among Oriental anopheline mosquitoes (Diptera: Culicidae), several major vectors of forest malaria belong to the group of Anopheles (Cellia) leucosphyrus Dönitz. We have morphologically examined representative material (> 8000 specimens from seven countries) for taxonomic revision of the Leucosphyrus Group. Six new species are here described from adult, pupal and larval stages (with illustrations of immature stages) and formally named as follows: An. latens n. sp. (= An. leucosphyrus species A of Baimai et al., 1988b), An. cracens n. sp., An. scanloni n. sp., An. baimaii n. sp. (formerly An. dirus species B, C, D, respectively), An. mirans n. sp. and An. recens n. sp. Additionally, An. elegans (James) is redescribed and placed in the complex of An. dirus Peyton & Harrison (comprising An. baimaii, An. cracens, An. dirus, An. elegans, An. nemophilous Peyton and Ramalingam, An. scanloni and An. takasagoensis Morishita) of the Leucosphyrus Subgroup, together with An. baisasi Colless and the An. leucosphyrus complex (comprising An. balabacensis Baisas, An. introlatus Baisas, An. latens and An. leucosphyrus). Hence, the former Elegans Subgroup is renamed the Hackeri Subgroup (comprising An. hackeri Edwards, An. pujutensis Colless, An. recens and An. sulawesi Waktoedi). Distribution data and bionomics of the newly defined species are given, based on new material and published records, with discussion of morphological characters for species distinction and implications for ecology and vector roles of such species. Now these and other members of the Leucosphyrus Group are identifiable, it should be possible to clarify the medical importance and distribution of each species. Those already regarded as vectors of human malaria are: An. baimaii[Bangladesh, China (Yunnan), India (Andamans, Assam, Meghalaya, West Bengal), Myanmar, Thailand]; An. latens[Borneo (where it also transmits Bancroftian filariasis), peninsular Malaysia, Thailand]; probably An. cracens (Sumatra, peninsular Malaysia, Thailand); presumably An. scanloni (Thailand); perhaps An. elegans (the Western Ghat form of An. dirus, restricted to peninsular India); but apparently not An. recens (Sumatra) nor An. mirans[Sri Lanka and south-west India (Karnataka, Kerala, Tamil Nadu)], which is a natural vector of simian malarias. Together with typical An. balabacensis, An. dirus and An. leucosphyrus, therefore, the Leucosphyrus Group includes about seven important vectors of forest malaria, plus at least a dozen species of no known medical importance, with differential specific distributions collectively spanning > 5000 km from India to the Philippines.
    Matched MeSH terms: Anopheles/classification*
  11. Jaal Z, Macdonald WW
    PMID: 8160064
    The host preferences of eight species of anophelines were studied in two coastal Malaysian villages, Kampung Permatang Rawa and Sungai Udang Kecil, by seven 12-hour catches in each village. Collections were made concurrently from a human-baited net trap, a cow-baited net trap and by human-bait landing catches. Anopheles campestris was attracted almost equally to man and cow, but An. lesteri paraliae, An. nigerrimus, An. peditaeniatus, An. sinensis, An. indefinitus, An. subpictus and An. vagus showed a strong preference for the cow bait. The human-bait landing catches were more productive than the human-baited net trap, which attracted very few mosquitos. Seven more all-night catches were made at each village employing only the cow-baited trap, and the combined data were used to plot the biting-cycles of each species at each site. Although the biting-cycles at the two localities were in general agreement, there were notable differences. At Sungai Udang Kecil, where the collection site was relatively sheltered, several species showed a steady decline in numbers from sunset to sunrise. At Kampung Permatang Rawa, on the other hand, where the site was more exposed and close to the sea, the same species showed a bimodal pattern of activity with an early evening peak followed by a decline then a period of increased activity before sunrise rising to a second, lesser peak at 0500-0600 hours.
    Matched MeSH terms: Anopheles/classification
  12. Taai K, Harbach RE, Somboon P, Sriwichai P, Aupalee K, Srisuka W, et al.
    Trop Biomed, 2019 Dec 01;36(4):926-937.
    PMID: 33597464
    Some species of the Anopheles dirus species complex are considered to be highly competent malaria vectors in Southeast Asia. Anopheles dirus is the primary vector of Plasmodium falciparum and P. vivax while An. cracens is the main vector of P. knowlesi. However, these two species are difficult to distinguish and identify based on morphological characters. Hence, the aim of this study was to investigate the potential use of antennal sensilla to distinguish them. Large sensilla coeloconica borne on the antennae of adult females were counted under a compound light microscope and the different types of antennal sensilla were examined in a scanning electron microscope. The antennae of both species bear five types of sensilla: ampullacea, basiconica, chaetica, coeloconica and trichodea. Observations revealed that the mean numbers of large sensilla coeloconica on antennal flagellomeres 2, 3, 7, 10 and 12 on both antennae of both species were significantly different. This study is the first to describe the types of antennal sensilla and to discover the usefulness of the large coeloconic sensilla for distinguishing the two species. The discovery provides a simple, reliable and inexpensive method for distinguishing them.
    Matched MeSH terms: Anopheles/classification
  13. Hawkes F, Manin BO, Ng SH, Torr SJ, Drakeley C, Chua TH, et al.
    Parasit Vectors, 2017 Jul 18;10(1):338.
    PMID: 28720113 DOI: 10.1186/s13071-017-2277-3
    BACKGROUND: Plasmodium knowlesi is found in macaques and is the only major zoonotic malaria to affect humans. Transmission of P. knowlesi between people and macaques depends on the host species preferences and feeding behavior of mosquito vectors. However, these behaviours are difficult to measure due to the lack of standardized methods for sampling potential vectors attracted to different host species. This study evaluated electrocuting net traps as a safe, standardised method for sampling P. knowlesi vectors attracted to human and macaque hosts. Field experiments were conducted within a major focus on P. knowlesi transmission in Malaysian Borneo to compare the performance of human (HENET) or macaque (MENET) odour-baited electrocuting nets, human landing catches (HLC) and monkey-baited traps (MBT) for sampling mosquitoes. The abundance and diversity of Anopheles sampled by different methods were compared over 40 nights, with a focus on the P. knowlesi vector Anopheles balabancensis.

    RESULTS: HLC caught more An. balabacensis than any other method (3.6 per night). In contrast, no An. balabacensis were collected in MBT collections, which generally performed poorly for all mosquito taxa. Anopheles vector species including An. balabacensis were sampled in both HENET and MENET collections, but at a mean abundance of less than 1 per night. There was no difference between HENET and MENET in the overall abundance (P = 0.05) or proportion (P = 0.7) of An. balabacensis. The estimated diversity of Anopheles species was marginally higher in electrocuting net than HLC collections, and similar in collections made with humans or monkey hosts.

    CONCLUSIONS: Host-baited electrocuting nets had moderate success for sampling known zoonotic malaria vectors. The primary vector An. balabacensis was collected with electrocuting nets baited both with humans and macaques, but at a considerably lower density than the HLC standard. However, electrocuting nets were considerably more successful than monkey-baited traps and representatively characterised anopheline species diversity. Consequently, their use allows inferences about relative mosquito attraction to be meaningfully interpreted while eliminating confounding factors due to trapping method. On this basis, electrocuting net traps should be considered as a useful standardised method for investigating vector contact with humans and wildlife reservoirs.

    Matched MeSH terms: Anopheles/classification
  14. Jiram AI, Vythilingam I, NoorAzian YM, Yusof YM, Azahari AH, Fong MY
    Malar J, 2012;11:213.
    PMID: 22727041
    The first natural infection of Plasmodium knowlesi in humans was recorded in 1965 in peninsular Malaysia. Extensive research was then conducted and it was postulated that it was a rare incident and that simian malaria will not be easily transmitted to humans. However, at the turn of the 21st century, knowlesi malaria was prevalent throughout Southeast Asia and is life threatening. Thus, a longitudinal study was initiated to determine the vectors, their seasonal variation and preference to humans and macaques.
    Matched MeSH terms: Anopheles/classification*
  15. Dusfour I, Michaux JR, Harbach RE, Manguin S
    Infect Genet Evol, 2007 Jul;7(4):484-93.
    PMID: 17350896
    Anopheles sundaicus s.l. is a malaria vector in coastal areas of Southeast Asia. Previous studies showed at least four distinct species within the complex. The present study investigated the phylogeography and the status of A. sundaicus s.l. populations from Cambodia, Thailand, Malaysia and Indonesia with regard to A. sundaicus s.s. from Sarawak, Malaysian Borneo and A. epiroticus in Vietnam and Thailand. Three lineages recovered by analyses of Cyt-b and COI (mtDNA) confirmed the presence of A. sundaicus s.s. in Malaysian Borneo, the distribution of A. epiroticus from southern Vietnam to peninsular Malaysia, and recognised a distinct form in Indonesia that is named A. sundaicus E. The phylogenetic and demographic analyses suggest that the three species were separated during the Early Pleistocene (1.8-0.78 Myr) and experienced bottlenecks followed by a genetic expansion in more recent times. Based on the results and knowledge of the biogeography of the area, we hypothesise that the combination of cyclical island and refugium creation was the cause of lineage isolation and bottleneck events during the Pleistocene.
    Matched MeSH terms: Anopheles/classification
  16. Walton C, Somboon P, O'Loughlin SM, Zhang S, Harbach RE, Linton YM, et al.
    Infect Genet Evol, 2007 Jan;7(1):93-102.
    PMID: 16782411
    The species diversity and genetic structure of mosquitoes belonging to the Anopheles maculatus group in Southeast Asia were investigated using the internal transcribed spacer 2 (ITS2) of ribosomal DNA (rDNA). A molecular phylogeny indicates the presence of at least one hitherto unrecognised species. Mosquitoes of chromosomal form K from eastern Thailand have a unique ITS2 sequence that is 3.7% divergent from the next most closely related taxon (An. sawadwongporni) in the group. In the context of negligible intraspecific variation at ITS2, this suggests that chromosomal form K is most probably a distinct species. Although An. maculatus sensu stricto from northern Thailand and southern Thailand/peninsular Malaysia differ from each other in chromosomal banding pattern and vectorial capacity, no intraspecific variation was observed in the ITS2 sequences of this species over this entire geographic area despite an extensive survey. A PCR-based identification method was developed to distinguish five species of the group (An. maculatus, An. dravidicus, An. pseudowillmori, An. sawadwongporni and chromosomal form K) to assist field-based studies in northwestern Thailand. Sequences from 187 mosquitoes (mostly An. maculatus and An. sawadwongporni) revealed no intraspecific variation in specimens from Thailand, Cambodia, mainland China, Malaysia, Taiwan and Vietnam, suggesting that this identification method will be widely applicable in Southeast Asia. The lack of detectable genetic structure also suggests that populations of these species are either connected by gene flow and/or share a recent common history.
    Matched MeSH terms: Anopheles/classification
  17. Vythilingam I, Chan ST, Shanmugratnam C, Tanrang H, Chooi KH
    Acta Trop, 2005 Oct;96(1):24-30.
    PMID: 16076459
    A study was carried out from July 2001 until January 2003 in the Kinabatangan area of Sabah, part of Borneo island, where malaria used to be mesoendemic. Vector surveys determined that Plasmodium falciparum was the predominant species and Anopheles balabacensis the primary vector. Malaria cases have dropped drastically over the years but P. falciparum is still predominant. In the present study, Anopheles donaldi was the predominant species and was positive for sporozoites. Although An. balabacensis was present, none were infective. An. donaldi bite more outdoors than indoors and have a peak biting time from 18:00 to 19:00 h when most people are still out of their homes. An integrated malaria control programme along with area development has helped in the control of malaria and its vector.
    Matched MeSH terms: Anopheles/classification
  18. Rahman WA, Abu Hassan A, Adanan CR, Mohd Razha R
    PMID: 8629076
    Twelve species of Anopheles were collected by using cow-baited net trap in a malarial endemic village in northern Peninsular Malaysia. Anopheles maculatus which is the main malaria vector with its densities were related to drought. An. aconitus, An. kochi and An. philippinensis were less susceptible to P. falciparum and P. vivax infection, and are not considered important in falciparum or vivax malaria transmission. Biting activities of An. kochi and An. vagus were primarily active after dusk and steadily declined after midnight. An. maculatus and An. aconitus showed biting activities throughout the night but An. maculatus showed two peaks of biting activity in the first half of the night.
    Matched MeSH terms: Anopheles/classification
  19. Yong HS, Chiang GL, Loong KP, Ooi CS
    PMID: 3238481
    Starch-gel electrophoretic studies on nine gene-enzyme systems comprising 14 loci revealed a fair level of genetic variation in two population samples of Anopheles maculatus from Peninsular Malaysia. The proportion of polymorphic loci was 0.36 for the Fort Bertau sample and 0.29 for the Gua Musang sample, while the mean heterozygosity value was 0.09 for Fort Bertau and 0.07 for Gua Musang. The values of genetic similarity (I = 0.98) and genetic distance (D = 0.02) were of the rank of geographical populations.
    Matched MeSH terms: Anopheles/classification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links