Displaying all 7 publications

Abstract:
Sort:
  1. Lee WC, Russell B, Lau YL, Fong MY, Chu C, Sriprawat K, et al.
    PLoS One, 2013;8(4):e60303.
    PMID: 23565221 DOI: 10.1371/journal.pone.0060303
    The quantity of circulating reticulocytes is an important indicator of erythropoietic activity in response to a wide range of haematological pathologies. While most modern laboratories use flow cytometry to quantify reticulocytes, most field laboratories still rely on 'subvital' staining. The specialist 'subvital' stains, New Methylene Blue (NMB) and Brilliant Crésyl Blue are often difficult to procure, toxic, and show inconsistencies between batches. Here we demonstrate the utility of Giemsa's stain (commonly used microbiology and parasitology) in a 'subvital' manner to provide an accurate method to visualize and count reticulocytes in blood samples from normal and malaria-infected individuals.
    Matched MeSH terms: Azure Stains*
  2. Anderios F, Zulaikah Mohamed, Ratnam S, Mohd Yusof Ibrahim, Tajul Ariffin Mohd Awang
    Sains Malaysiana, 2008;37(2).
    The emergence of primate malaria known as Plasmodium knowlesi in humans, which is always misdiagnosed by microscopy as P. malariae, has contribute to the needs of nucleic acid based technology to be applied in detection and differentiation of malaria parasites. The target DNA sequence of the 18SrRNA gene was amplified by a nested PCR assay for detection and identification of Plasmodium species in 31 Giemsa-stained blood smears examined as P. malariae. The assay demonstrated three samples identified as positive to genus-specific primers but negative to all species-specific primers. Three cases of misdiagnosed species were detected. The samples were diagnosed as P. malariae microscopically, but detected as P. falciparum by PCR assay. Twenty five out of 31 samples were detected as P. knowlesi. None of the samples diagnosed microscopically as P. malariae were identified as P. malariae with the nested PCR assay. Over 80.6% of all malaria cases in this study showed naturally acquired P. knowlesi infections.
    Matched MeSH terms: Azure Stains
  3. Ragavan AD, Govind SK
    Parasitol Res, 2015 Mar;114(3):1163-6.
    PMID: 25614298 DOI: 10.1007/s00436-014-4296-8
    Dientamoeba fragilis, a trichomonad parasite is usually found in the gastrointestinal tract of human, and it is known to be the cause for gastrointestinal disease. The parasite is globally distributed and mostly found in rural and urban areas. The parasite is found in humans and nonhuman primates such as the macaques, baboons, and gorillas. Often, the parasite is confused with another largely found organism in stools called Blastocystis sp. especially when seen directly under light microscopy on culture samples containing both parasites. Both sometimes are seen with two nuclei with sizes tending to be similar which complicates identification. Stools were collected fresh from nine previously diagnosed persons infected with D. fragilis who also were found to be positive for Blastocystis sp. Samples were then cultured in Loeffler's medium and were stained with Giemsa, iron hematoxylin, and modified Fields' (MF) stain, respectively. D. fragilis was differentiated from Blastocystis sp. when stained with MF stain by the presence of a thinner outer membrane with clearly demarcated nuclei in the center of the cell whilst Blastocystis sp. had a darker and thicker stained outer membrane with the presence of two nuclei. The staining contrast was more evident with modified Fields' stain when compared with the other two. The simplicity in preparing the stain as well as the speed of the staining procedure make MF stain an ideal alternate. The modified Fields' stain is faster and easier to prepare when compared to the other two stains. MF stain provides a better contrast differentiating the two organisms and therefore provides a more reliable diagnostic method to precisely identify one from the other especially when cultures show mixed infections.
    Matched MeSH terms: Azure Stains
  4. Mak JW, Normaznah Y, Chiang GL
    Singapore Med J, 1992 Oct;33(5):452-4.
    PMID: 1455266
    The quantitative buffy coat (QBC) technique was compared with the conventional thick blood film technique in a malaria survey carried out in a mesoendemic area of malaria in Betau, Pahang, Malaysia. The QBC technique was found to be a rapid technique but had a sensitivity of about 56% and a specificity of 95%, using the thick blood film method as the "gold standard". Malaria species identification was unsatisfactory with the QBC technique as it could identify parasites correctly in only about 60% of specimens. It was unable to detect as positive about 58% of specimens which had parasite counts < or = 500 per ul but could detect about 94% of those with counts > 500 per ul. This difference in positive detection rate was significantly different (p < 0.05). It cannot quantify parasitemia easily and the specimens cannot be stored for future reference and for quality control purposes. It is therefore concluded that the QBC technique cannot replace the classical thick blood film technique for use in malaria control programmes. Its use may be appropriate in situations like busy blood banks and outpatient clinics where rapid screening of malaria infection is needed but where experienced malaria microscopists may not be available.
    Matched MeSH terms: Azure Stains
  5. Afzan MY, Sivanandam S, Kumar GS
    Diagn Microbiol Infect Dis, 2010 Oct;68(2):159-62.
    PMID: 20846588 DOI: 10.1016/j.diagmicrobio.2010.06.005
    Trichomonas vaginalis, a flagellate protozoan parasite commonly found in the human genitourinary tract, is transmitted primarily by sexual intercourse. Diagnosis is usually by in vitro culture method and staining with Giemsa stain. There are laboratories that use Gram stain as well. We compared the use of modified Field's (MF), Giemsa, and Gram stains on 2 axenic and xenic isolates of T. vaginalis, respectively. Three smears from every sediment of spun cultures of all 4 isolates were stained, respectively, with each of the stains. We showed that MF staining, apart from being a rapid stain (20 s), confers sharper staining contrast, which differentiates the nucleus and the cytoplasm of the organism when compared to Giemsa and Gram staining especially on parasites from spiked urine samples. The alternative staining procedure offers in a diagnostic setting a rapid stain that can easily visualize the parasite with sharp contrasting characteristics between organelles especially the nucleus and cytoplasm. Vacuoles are more clearly visible in parasites stained with MF than when stained with Giemsa.
    Matched MeSH terms: Azure Stains
  6. Kaur G, Madhavan M, Basri AH, Sain AH, Hussain MS, Yatiban MK, et al.
    PMID: 15689086
    The objective of this study was to determine the sensitivity, specificity, positive (PPV), and negative predictive values (NPV) of Diff-Quik-stained gastric imprint cytology smears in the detection of H. pylori compared with histology. Air-dried imprint smears of gastric biopsies from 150 patients were stained by the Diff-Quik method in the endoscopy suite and examined for H. pylori, providing results within minutes. The presence of inflammation and intestinal metaplasia were documented. The same biopsy was processed and stained with H&E and Warthin-Starry stains, and reviewed by a different pathologist blind to the imprint cytology results. Ninety-four of the 150 patients were male with a mean age of 50 years. Based on histology, the H. pylori prevalence was very low at 8%. The sensitivity and specificity of imprint cytology in the detection of H. pylori were 83.3% and 100%, respectively. The PPV and NPV were 100% and 98.6%, respectively. There were two false negatives and no false positives. A combination of imprint cytology and histology achieved 100% sensitivity. Imprint smears did not provide added value over histology with regards to inflammation and metaplasia. Gastric imprint smears stained with Diff-Quik method is a rapid, cheap, and reliable method for the detection of H. pylori and have their best results when complemented with histology.
    Matched MeSH terms: Azure Stains
  7. Tay ST, Rohani MY, Ho TM, Devi S
    PMID: 12757225
    Isolation of rickettsiae from patients' blood samples and organ samples of wild rodents from areas with high seroprevalence of rickettsial infections was attempted using cell culture assay and animal passages. L929 mouse fibroblast cells grown in 24 well tissue culture plate were inoculated with buffy coat of febrile patients and examined for the growth of rickettsiae by Giemsa, Gimenez staining and direct immunofluorescence assay. No rickettsiae were isolated from 48 patients' blood samples. No symptomatic infections were noted in mice or guinea pigs infected with 50 organ samples of wild rodents. There was no rickettsial DNA amplified from these samples using various PCR detection systems for Orientia tsutsugamushi, typhus and spotted fever group rickettsiae.
    Matched MeSH terms: Azure Stains
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links