Displaying all 9 publications

Abstract:
Sort:
  1. Kow CS, Ramachandram DS, Hasan SS
    Angiogenesis, 2023 Nov;26(4):481-483.
    PMID: 37530975 DOI: 10.1007/s10456-023-09889-2
    Imatinib, an ABL tyrosine-kinase inhibitor, shows promise in restoring endothelial barrier function in patients with COVID-19, thus, preventing cytokine leakage from the alveolar compartment to the systemic compartment. COVID-19 is characterized by an alveolar cytokine storm, and imatinib has been shown to strengthen the endothelial barrier and mitigate alveolar inflammatory responses by modulating NF-κB signaling. Incorporating imatinib into COVID-19 treatment strategies offers a novel approach to safeguard the endothelial barrier and address the complex pathophysiology of the disease, including its potential implications in long COVID. Given that endothelial dysfunction plays a central role in COVID-19 progression and long COVID development, protecting the endothelial barrier during acute infection is crucial in preventing the persistent endothelial dysfunction associated with long COVID.
    Matched MeSH terms: Benzamides/pharmacology
  2. Samat N, Ng MF, Ruslan NF, Okuda KS, Tan PJ, Patel V
    Assay Drug Dev Technol, 2018 10;16(7):408-419.
    PMID: 29985634 DOI: 10.1089/adt.2017.833
    Natural products are prolific producers of diverse chemical scaffolds, which have yielded several clinically useful drugs. However, the complex features of natural products present challenges for identifying bioactive molecules using high-throughput screens. For most assays, measured endpoints are either colorimetric or luminescence based. Thus, the presence of the major metabolites, tannins, and chlorophylls, in natural products could potentially interfere with these measurements to give either false-positive or false-negative hits. In this context, zebrafish phenotypic assays provide an alternative approach to bioprospect naturally occurring bioactive compounds. Whether tannins and/or chlorophylls interfere in zebrafish phenotypic assays, is unclear. In this study, we evaluated the interference potential of tannins and chlorophylls against efficacy of known small-molecule inhibitors that are known to cause phenotypic abnormalities in developing zebrafish embryos. First, we fractionated tannin-enriched fraction (TEF) and chlorophyll-enriched fraction (CEF) from Camellia sinensis and cotreated them with PD0325901 [mitogen-activated protein kinase-kinase (MEK) inhibitor] and sunitinib malate (SM; anti-[lymph]angiogenic drug). While TEF and CEF did not interfere with phenotypic or molecular endpoints of PD0325901, TEF at 100 μg/mL partially masked the antiangiogenic effect of SM. On the other hand, CEF (100 μg/mL) was toxic when treated up to 6 dpf. Furthermore, CEF at 100 μg/mL potentially enhanced the activity of γ-secretase inhibitors, resulting in toxicity of treated embryos. Our study provides evidence that the presence of tannin and/or chlorophyll in natural products do interfere with zebrafish phenotype assays used for identifying potential hits. However, this may be target/assay dependent and thus requiring additional optimization steps to assess interference potential of tannins and chlorophylls before performing any screening assay.
    Matched MeSH terms: Benzamides/pharmacology*
  3. Taha M, Ismail NH, Khan A, Shah SA, Anwar A, Halim SA, et al.
    Bioorg Med Chem Lett, 2015 Aug 15;25(16):3285-9.
    PMID: 26077497 DOI: 10.1016/j.bmcl.2015.05.069
    We synthesized a series of novel 5-24 derivatives of oxindole. The synthesis started from 5-chlorooxindole, which was condensed with methyl 4-carboxybezoate and result in the formation of benzolyester derivatives of oxindole which was then treated with hydrazine hydrate. The oxindole benzoylhydrazide was treated with aryl acetophenones and aldehydes to get target compounds 5-24. The synthesized compounds were evaluated for urease inhibition; the compound 5 (IC50 = 13.00 ± 0.35 μM) and 11 (IC50 = 19.20 ± 0.50 μM) showed potent activity as compared to the standard drug thiourea (IC50 = 21.00 ± 0.01 μM). Other compounds showed moderate to weak activity. All synthetic compounds were characterized by different spectroscopic techniques including (1)H NMR, (13)C NMR, IR and EI MS. The molecular interactions of the active compounds within the binding site of urease enzyme were studied through molecular docking simulations.
    Matched MeSH terms: Benzamides/pharmacology
  4. Abbasi MA, Nazir M, Ur-Rehman A, Siddiqui SZ, Hassan M, Raza H, et al.
    Arch Pharm (Weinheim), 2019 Mar;352(3):e1800278.
    PMID: 30624805 DOI: 10.1002/ardp.201800278
    Novel bi-heterocyclic benzamides were synthesized by sequentially converting 4-(1H-indol-3-yl)butanoic acid (1) into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3), and a nucleophilic 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4). In a parallel series of reactions, various electrophiles were synthesized by reacting substituted anilines (5a-k) with 4-(chloromethyl)benzoylchloride (6) to afford 4-(chloromethyl)-N-(substituted-phenyl)benzamides (7a-k). Finally, the nucleophilic substitution reaction of 4 was carried out with newly synthesized electrophiles, 7a-k, to acquire the targeted bi-heterocyclic benzamides, 8a-k. The structural confirmation of all the synthesized compounds was done by IR, 1 H NMR, 13 C NMR, EI-MS, and CHN analysis data. The inhibitory effects of these bi-heterocyclic benzamides (8a-k) were evaluated against alkaline phosphatase, and all these molecules were identified as potent inhibitors relative to the standard used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 8b inhibited alkaline phosphatase non-competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 1.15 μM. The computational study was in full agreement with the experimental records and these ligands exhibited good binding energy values. These molecules also exhibited mild cytotoxicity toward red blood cell membranes when analyzed through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds to render normal calcification of bones and teeth.
    Matched MeSH terms: Benzamides/pharmacology
  5. Kim RP, Bihud V, Bin Mohamad K, Leong KH, Bin Mohamad J, Bin Ahmad F, et al.
    Molecules, 2012 Dec 21;18(1):128-39.
    PMID: 23344192 DOI: 10.3390/molecules18010128
    Eleven compounds:goniomicin A (1), goniomicin B (2), goniomicin C (3), goniomicin D (4), tapisoidin (5), goniothalamin (6), 9-deoxygoniopypyrone (7), pterodondiol (8), liriodenine (9), benzamide (10) and cinnamic acid (11), were isolated from the stem bark of Goniothalamus tapisoides. All compounds were identified by spectroscopic analysis and, for known compounds, by comparison with published data. Goniothalamin (6) exhibited mild cytotoxic activity towards a colon cancer cell line (HT-29), with an IC(50)value of 64.17 ± 5.60 µM. Goniomicin B (2) give the highest antioxidant activity in the DPPH assay among all compounds tested, with an IC(50) of 0.207 µM.
    Matched MeSH terms: Benzamides/pharmacology
  6. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
    Matched MeSH terms: Benzamides/pharmacology*
  7. Al-Jamal HA, Jusoh SA, Yong AC, Asan JM, Hassan R, Johan MF
    Asian Pac J Cancer Prev, 2014;15(11):4555-61.
    PMID: 24969884
    BACKGROUND: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib.

    MATERIALS AND METHODS: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and IC50 values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting.

    RESULTS: The IC50 for imatinib on K562 was 362 nM compared to 3,952 nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down- regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562.

    CONCLUSIONS: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.

    Matched MeSH terms: Benzamides/pharmacology*
  8. Loh SW, Ng WL, Yeo KS, Lim YY, Ea CK
    PLoS One, 2014;9(7):e103915.
    PMID: 25079219 DOI: 10.1371/journal.pone.0103915
    H3K9 methylation is one of the essential histone post-translational modifications for heterochromatin formation and transcriptional repression. Recently, several studies have demonstrated that H3K9 methylation negatively regulates the type I interferon response.
    Matched MeSH terms: Benzamides/pharmacology
  9. Mat Nor MN, Rupenthal ID, Green CR, Acosta ML
    Int J Mol Sci, 2021 Feb 10;22(4).
    PMID: 33578721 DOI: 10.3390/ijms22041755
    Dysregulation of retinal function in the early stages of light-induced retinal degeneration involves pannexins and connexins. These two types of proteins may contribute to channels that release ATP, leading to activation of the inflammasome pathway, spread of inflammation and retinal dysfunction. However, the effect of pannexin channel block alone or block of both pannexin channels and connexin hemichannels in parallel on retinal activity in vivo is unknown. In this study, the pannexin channel blocker probenecid and the connexin hemichannel blocker tonabersat were used in the light-damaged rat retina. Retinal function was evaluated using electroretinography (ERG), retinal structure was analyzed using optical coherence tomography (OCT) imaging and the tissue response to light-induced injury was assessed immunohistochemically with antibodies against glial fibrillary acidic protein (GFAP), Ionized calcium binding adaptor molecule 1 (Iba-1) and Connexin43 (Cx43). Probenecid did not further enhance the therapeutic effect of connexin hemichannel block in this model, but on its own improved activity of certain inner retina neurons. The therapeutic benefit of blocking connexin hemichannels was further evaluated by comparing these data against results from our previously published studies that also used the light-damaged rat retina model. The analysis showed that treatment with tonabersat alone was better than probenecid alone at restoring retinal function in the light-damaged retina model. The results assist in the interpretation of the differential action of connexin hemichannel and pannexin channel therapeutics for potential treatment of retinal diseases.
    Matched MeSH terms: Benzamides/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links