Displaying publications 1 - 20 of 86 in total

Abstract:
Sort:
  1. Law CSW, Yeong KY
    ChemMedChem, 2021 06 17;16(12):1861-1877.
    PMID: 33646618 DOI: 10.1002/cmdc.202100004
    Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
    Matched MeSH terms: Benzimidazoles/chemical synthesis*; Benzimidazoles/pharmacology; Benzimidazoles/chemistry
  2. Arumugam N, Abdul Rahim AS, Abd Hamid S, Osman H
    Molecules, 2012 Aug 17;17(8):9887-99.
    PMID: 22902883 DOI: 10.3390/molecules17089887
    A series of novel 1-(2'-α-O-D-glucopyranosyl ethyl) 2-arylbenzimidazoles has been prepared via one-pot glycosylation of ethyl-1-(2'-hydroxyethyl)-2-arylbenzimidazole-5-carboxylate derivatives. Synthesis of the 2-arylbenzimidazole aglycones from 4-fluoro-3-nitrobenzoic acid was accomplished in four high-yielding steps. The reduction and cyclocondensation steps for the aglycone synthesis proceeded efficiently under microwave irradiation to afford the appropriate benzimidazoles in excellent yields within 2-3 min. Glycosylation of the hydroxyethyl aglycones with the perbenzylated 1-hydroxy- glucopyranose, pretreated with the Appel-Lee reagent, followed by catalytic hydrogenolysis delivered the desired 1-(2'-α-O-D-glucopyranosyl ethyl) 2-aryl-benzimidazoles in a simple and straightforward manner.
    Matched MeSH terms: Benzimidazoles/chemical synthesis*; Benzimidazoles/chemistry
  3. Yoon YK, Ali MA, Wei AC, Choon TS, Ismail R
    Eur J Med Chem, 2015 Mar 26;93:614-24.
    PMID: 24996257 DOI: 10.1016/j.ejmech.2013.06.025
    A total of 51 novel benzimidazoles were synthesized by a 4-step reaction starting from basic compound 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The structure of the novel benzimidazoles was confirmed by mass spectra as well as (1)H NMR spectroscopic data. Out of the 51 novel synthesized compounds, 42 of them were screened for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv strain using BacTiter-Glo™ Microbial Cell Viability (BTG) method. Results of activity screened using Alamar Blue method was also provided for comparison purposes. Two of the novel benzimidazoles synthesized showed moderately good activity with IC50 of less than 15 μM. Compound 5g, ethyl 2-(4-(trifluoromethyl)phenyl)-1-(2-morpholinoethyl)-1H-benzo[d]imidazole-5-carboxylate, was found to be the most active with IC50 of 11.52 μM.
    Matched MeSH terms: Benzimidazoles/chemical synthesis*; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry
  4. Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al.
    Bioorg Chem, 2013 Aug;49:33-9.
    PMID: 23886696 DOI: 10.1016/j.bioorg.2013.06.008
    Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed.
    Matched MeSH terms: Benzimidazoles/chemical synthesis; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry*
  5. Taha M, Ismail NH, Imran S, Selvaraj M, Rashwan H, Farhanah FU, et al.
    Bioorg Chem, 2015 Aug;61:36-44.
    PMID: 26073618 DOI: 10.1016/j.bioorg.2015.05.010
    Twenty five 4, 6-dichlorobenzimidazole derivatives (1-25) have been synthesized and evaluated against β-glucuronidase inhibitory activity. The compounds which actively inhibit β-glucuronidase activity have IC50 values ranging between 4.48 and 46.12 μM and showing better than standard d-saccharic acid 1,4 lactone (IC50=48.4 ± 1.25 μM). Molecular docking provided potential clues to identify interactions between the active molecules and the enzyme which further led us to identify plausible binding mode of all the benzimidazole derivatives. This study confirmed that presence of hydrophilic moieties is crucial to inhibit the human β-glucuronidase.
    Matched MeSH terms: Benzimidazoles/chemical synthesis; Benzimidazoles/metabolism; Benzimidazoles/chemistry*
  6. Zaman K, Rahim F, Taha M, Ullah H, Wadood A, Nawaz M, et al.
    Bioorg Chem, 2019 08;89:103024.
    PMID: 31176853 DOI: 10.1016/j.bioorg.2019.103024
    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the urease inhibitory potential. For that purpose, benzimidazole analogues 1-19 were synthesized and screened for in vitro urease inhibitory potential. Structures of all synthetic analogues were deduced by different spectroscopic techniques. All analogues revealed inhibition potential with IC50 values of 0.90 ± 0.01 to 35.20 ± 1.10 μM, when compared with the standard thiourea (IC50 = 21.40 ± 0.21 μM). Limited SAR suggested that the variations in the inhibitory potentials of the analogues are the result of different substitutions on phenyl ring. In order to rationalize the binding interactions of most active compounds with the active site of urease enzyme, molecular docking study was conducted.
    Matched MeSH terms: Benzimidazoles/chemical synthesis; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry
  7. Adam F, Arafath MA, Rosenani AH, Razali MR
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 1;71(Pt 12):o971-2.
    PMID: 26870556 DOI: 10.1107/S2056989015021180
    In the mol-ecule of the title compound, C21H17N3O2, the 5,6-di-hydro-benzimidazo[1,2-c]quinazoline moiety is disordered over two orientations about a pseudo-mirror plane, with a refined occupancy ratio of 0.863 (2):0.137 (2). The dihedral angles formed by the benzimidazole ring system and the benzene ring of the quinazoline group are 14.28 (5) and 4.7 (3)° for the major and minor disorder components, respectively. An intra-molecular O-H⋯O hydrogen bond is present. In the crystal, mol-ecules are linked by O-H⋯N hydrogen bonds, forming chains running parallel to [10-1].
    Matched MeSH terms: Benzimidazoles
  8. Taha M, Rahim F, Zaman K, Selvaraj M, Uddin N, Farooq RK, et al.
    Bioorg Chem, 2020 01;95:103555.
    PMID: 31911306 DOI: 10.1016/j.bioorg.2019.103555
    A series of twenty-six analogs of benzimidazole based oxadiazole have been synthesized and evaluated against alpha-glycosidase enzyme. Most the analogs showed excellent to good inhibitory potential. Among the screened analogs, analog 1, 2, 3 and 14 with IC50 values 4.6 ± 0.1, 9.50 ± 0.3, 2.6 ± 0.1 and 9.30 ± 0.4 µM respectively showedexcellent inhibitory potential than reference drug acarbose (IC50 = 38.45 ± 0.80 µM). Some of the analogs like 19, 21, 22 and 23 with methyl and methoxy substituent on phenyl ring show hydrophobic interaction and were found with no inhibitory potential. The binding interactions between synthesized analogs and ligands protein were confirmed through molecular docking study. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. These derivatives were synthesized by simple mode of synthesis like heterocyclic ring formation.
    Matched MeSH terms: Benzimidazoles/pharmacology*
  9. Abdullah MN, Ali Y, Abd Hamid S
    Chem Biol Drug Des, 2022 Dec;100(6):921-934.
    PMID: 34651438 DOI: 10.1111/cbdd.13974
    Tyrosine kinase overexpression could result in an unfavourable consequence of cancer progression in the body. A number of kinase inhibitor drugs targeting various cancer-related protein kinases have been developed and proven successful in clinical therapy. Benzimidazole is one of the most studied scaffolds in the search for effective anticancer drugs. The association of various functional groups and the structural design of the compounds may influence the binding towards the receptor. Despite numerous publications on the design, synthesis and biological assays of benzimidazole derivatives, their inhibitory activities against epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), have not been specifically analysed. This review covers recent research reports on the anticancer activity of benzimidazole derivatives focusing on EGFR expression cell lines, based on their structure-activity relationship study. We believe it would aid researchers to envision the challenges and explore benzimidazole's potentials as tyrosine kinase inhibitors.
    Matched MeSH terms: Benzimidazoles/chemistry
  10. Hussain R, Ullah H, Rahim F, Sarfraz M, Taha M, Iqbal R, et al.
    Molecules, 2022 Sep 18;27(18).
    PMID: 36144820 DOI: 10.3390/molecules27186087
    Twenty-four analogues of benzimidazole-based thiazoles (1-24) were synthesized and assessed for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory potential. All analogues were found to exhibit good inhibitory potential against cholinesterase enzymes, having IC50 values in the ranges of 0.10 ± 0.05 to 11.10 ± 0.30 µM (for AChE) and 0.20 ± 0.050 µM to 14.20 ± 0.10 µM (for BuChE) as compared to the standard drug Donepezil (IC50 = 2.16 ± 0.12 and 4.5 ± 0.11 µM, respectively). Among the series, analogues 16 and 21 were found to be the most potent inhibitors of AChE and BuChE enzymes. The number (s), types, electron-donating or -withdrawing effects and position of the substituent(s) on the both phenyl rings B & C were the primary determinants of the structure-activity relationship (SAR). In order to understand how the most active derivatives interact with the amino acids in the active site of the enzyme, molecular docking studies were conducted. The results obtained supported the experimental data. Additionally, the structures of all newly synthesized compounds were elucidated by using several spectroscopic methods like 13C-NMR, 1H-NMR and HR EIMS.
    Matched MeSH terms: Benzimidazoles/chemistry
  11. Yoon YK, Choon TS
    Arch Pharm (Weinheim), 2016 Jan;349(1):1-8.
    PMID: 26616218 DOI: 10.1002/ardp.201500337
    Benzimidazole derivatives have been shown to possess sirtuin-inhibitory activity. In the continuous search for potent sirtuin inhibitors, systematic changes on the terminal benzene ring were performed on previously identified benzimidazole-based sirtuin inhibitors, to further investigate their structure-activity relationships. It was demonstrated that the sirtuin activities of these novel compounds followed the trend where meta-substituted compounds possessed markedly weaker potency than ortho- and para-substituted compounds, with the exception of halogenated substituents. Molecular docking studies were carried out to rationalize these observations. Apart from this, the methods used to synthesize the interesting compounds are also discussed.
    Matched MeSH terms: Benzimidazoles
  12. Taha M, Ismail NH, Jamil W, Rashwan H, Kashif SM, Sain AA, et al.
    Eur J Med Chem, 2014 Sep 12;84:731-8.
    PMID: 25069019 DOI: 10.1016/j.ejmech.2014.07.078
    4-Methylbenzimidazole 1-28 novel derivatives were synthesized and evaluated for their antiglycation and antioxidant activities. Compounds 1-7 and 11 showed excellent activities ranged 140-280 μM, better than standard drug rutin (294.46 ± 1.50 μM). Compound 1-28 were also evaluated for DPPH activities. Compounds 1-8 showed excellent activities, ranging 12-29 μM, better than standard drug n-propylgallate (IC50 = 30.30 ± 0.40 μM). For superoxide anion scavenging activity, compounds 1-7 showed better activity than standard n-propylgallate (IC50 = 106.34 ± 1.6 μM), ranged 82-104 μM. These compounds were found to be nontoxic to THP-1 cells.
    Matched MeSH terms: Benzimidazoles/chemical synthesis; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry
  13. Keng Yoon Y, Ashraf Ali M, Choon TS, Ismail R, Chee Wei A, Suresh Kumar R, et al.
    Biomed Res Int, 2013;2013:926309.
    PMID: 24381946 DOI: 10.1155/2013/926309
    A total of seven novel benzimidazoles were synthesized by a 4-step reaction starting from 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H₃₇Rv (MTB-H₃₇Rv) and INH-resistant M. tuberculosis (INHR-MTB) strains using agar dilution method. Three of them displayed good activity with MIC of less than 0.2 μM. Compound ethyl 1-(2-(4-(4-(ethoxycarbonyl)-2-aminophenyl)piperazin-1-yl)ethyl)-2-(4-(5-(4-fluorophenyl)pyridin-3-ylphenyl-1H-benzo[d]imidazole-5-carboxylate (5 g) was found to be the most active with MIC of 0.112 μM against MTB-H₃₇Rv and 6.12 μM against INHR-MTB, respectively.
    Matched MeSH terms: Benzimidazoles/chemical synthesis; Benzimidazoles/therapeutic use*; Benzimidazoles/chemistry
  14. Adalat B, Rahim F, Taha M, Alshamrani FJ, Anouar EH, Uddin N, et al.
    Molecules, 2020 Oct 20;25(20).
    PMID: 33092223 DOI: 10.3390/molecules25204828
    We synthesized 10 analogs of benzimidazole-based thiosemicarbazide 1 (a-j) and 13 benzimidazole-based Schiff bases 2 (a-m), and characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibition activities. All the synthesized analogs showed varying degrees of acetylcholinesterase and butyrylcholinesterase inhibitory potentials in comparison to the standard drug (IC50 = 0.016 and 4.5 µM. Amongst these analogs 1 (a-j), compounds 1b, 1c, and 1g having IC50 values 1.30, 0.60, and 2.40 µM, respectively, showed good acetylcholinesterase inhibition when compared with the standard. These compounds also showed moderate butyrylcholinesterase inhibition having IC50 values of 2.40, 1.50, and 2.40 µM, respectively. The rest of the compounds of this series also showed moderate to weak inhibition. While amongst the second series of analogs 2 (a-m), compounds 2c, 2e, and 2h having IC50 values of 1.50, 0.60, and 0.90 µM, respectively, showed moderate acetylcholinesterase inhibition when compared to donepezil. Structure Aactivity Relation of both synthesized series has been carried out. The binding interactions between the synthesized analogs and the enzymes were identified through molecular docking simulations.
    Matched MeSH terms: Benzimidazoles/chemical synthesis*; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry
  15. Khan IA, Ahmad M, Ashfaq UA, Sultan S, Zaki MEA
    Molecules, 2021 Aug 06;26(16).
    PMID: 34443347 DOI: 10.3390/molecules26164760
    α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a-m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a-m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.
    Matched MeSH terms: Benzimidazoles/metabolism; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry*
  16. Vassiliev P, Iezhitsa I, Agarwal R, Marcus AJ, Spasov A, Zhukovskaya O, et al.
    Data Brief, 2018 Jun;18:340-347.
    PMID: 29896521 DOI: 10.1016/j.dib.2018.02.067
    This article contains data that relate to the study carried out in the work of Marcus et al. (2018) [1]. Data represent an information about pharmacophore analysis of imidazo[1,2-a]benzimidazole and pyrimido[1,2-a]benzimidazole derivatives and results of construction of the relationship between intraocular pressure (IOP) lowering activity and hypotensive activity of imidazo[1,2-a]benzimidazole and pyrimido[1,2-a]benzimidazole derivatives using a multilayer perceptron artificial neural network. In particular, they include the ones listed in this article: 1) table of all pharmacophores of imidazo[1,2-a]benzimidazole and pyrimido[1,2-a]benzimidazole derivatives that showed IOP lowering activity; 2) table of all pharmacophores of the compounds that showed absence of IOP lowering activity; 3) table of initial data for artificial neural network analysis of relationship between IOP activity and hypotensive activity of this chemical series; 4) graphical representation of the best neural network model of this dependence; 5) original txt-file of results of pharmacophore analysis; 6) xls-file of initial data for neural network modeling; 7) original stw-file of results of neural network modeling; 8) original xml-file of the best neural network model of dependence between IOP lowering activity and hypotensive activity of these azole derivatives. The data may be useful for researchers interested in designing new drug substances and will contribute to understanding of the mechanisms of IOP lowering activity.
    Matched MeSH terms: Benzimidazoles
  17. Marcus AJ, Iezhitsa I, Agarwal R, Vassiliev P, Spasov A, Zhukovskaya O, et al.
    Data Brief, 2018 Jun;18:523-554.
    PMID: 29896529 DOI: 10.1016/j.dib.2018.03.019
    This data is to document the intraocular pressure (IOP) lowering activity of imidazo[1,2-a]benzimidazole and pyrimido[1,2-a]benzimidazole compounds in ocular normotensive rats. Effects of single drop application of imidazo[1,2-a]benzimidazole and pyrimido[1,2-a]benzimidazole compounds on IOP in ocular normotensive rats are presented at 3 different concentrations (0.1%, 0.2% and 0.4%). Time course of changes in IOP is presented over 6 h period post-instillation. The IOP lowering activities of test compounds were determined by assessing maximum decrease in IOP from baseline and corresponding control, duration of IOP lowering and area under curve (AUC) of time versus response curve. Data shown here may serve as benchmarks for other researchers studying IOP-lowering effect of imidazo[1,2-a]benzimidazole and pyrimido[1,2-a]benzimidazole compounds and would be useful in determining therapeutic potential of these test compounds as IOP lowering agents.
    Matched MeSH terms: Benzimidazoles
  18. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F
    Bioorg Chem, 2017 02;70:184-191.
    PMID: 28043716 DOI: 10.1016/j.bioorg.2016.12.009
    Thiourea derivatives having benzimidazole 1-17 have been synthesized, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker's yeast α-glucosidase enzyme. Compounds 1-17 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83±0.66 and 297.99±1.20μM which are more better than the standard acarbose (IC50=774.5±1.94μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57±0.81 and 35.83±0.66μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
    Matched MeSH terms: Benzimidazoles/chemical synthesis; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry*
  19. Arshad T, Khan KM, Rasool N, Salar U, Hussain S, Asghar H, et al.
    Bioorg Chem, 2017 06;72:21-31.
    PMID: 28346872 DOI: 10.1016/j.bioorg.2017.03.007
    On the basis of previous report on promising α-glucosidase inhibitory activity of 5-bromo-2-aryl benzimidazole derivatives, these derivatives were further screened for urease inhibitory and cytotoxicity activity in order to get more potent and non-cytotoxic potential dual inhibitor for the patients suffering from diabetes as well as peptic ulcer. In this study, all compounds showed varying degree of potency in the range of (IC50=8.15±0.03-354.67±0.19μM) as compared to standard thiourea (IC50=21.25±0.15μM). It is worth mentioning that derivatives 7 (IC50=12.07±0.05μM), 8 (IC50=10.57±0.12μM), 11 (IC50=13.76±0.02μM), 14 (IC50=15.70±0.12μM) and 22 (IC50=8.15±0.03μM) were found to be more potent inhibitors than standard. All compounds were also evaluated for cytotoxicity towards 3T3 mouse fibroblast cell line and found to be completely non-toxic. Previously benzimidazole 1-25 were also showed α-glucosidase inhibitory potential. In silico studies were performed on the lead molecules i.e.2, 7, 8, 11, 14, and 22, in order to rationalize the binding interaction of compounds with the active site of urease enzyme.
    Matched MeSH terms: Benzimidazoles/chemical synthesis; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry
  20. Adegboye AA, Khan KM, Salar U, Aboaba SA, Kanwal, Chigurupati S, et al.
    Eur J Med Chem, 2018 Apr 25;150:248-260.
    PMID: 29533872 DOI: 10.1016/j.ejmech.2018.03.011
    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the α-amylase inhibitory activity. For that purpose, 2-aryl benzimidazole derivatives 1-45 were synthesized and screened for in vitro α-amylase inhibitory activity. Structures of all synthetic compounds were deduced by various spectroscopic techniques. All compounds revealed inhibition potential with IC50 values of 1.48 ± 0.38-2.99 ± 0.14 μM, when compared to the standard acarbose (IC50 = 1.46 ± 0.26 μM). Limited SAR suggested that the variation in the inhibitory activities of the compounds are the result of different substitutions on aryl ring. In order to rationalize the binding interactions of most active compounds with the active site of α-amylase enzyme, in silico study was conducted.
    Matched MeSH terms: Benzimidazoles/chemical synthesis; Benzimidazoles/pharmacology*; Benzimidazoles/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links