Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Kumar V, Lakkaboyana SK, Tsouko E, Maina S, Pandey M, Umesh M, et al.
    Int J Biol Macromol, 2023 Apr 15;234:123733.
    PMID: 36801274 DOI: 10.1016/j.ijbiomac.2023.123733
    The exponential increase in the use and careless discard of synthetic plastics has created an alarming concern over the environmental health due to the detrimental effects of petroleum based synthetic polymeric compounds. Piling up of these plastic commodities on various ecological niches and entry of their fragmented parts into soil and water has clearly affected the quality of these ecosystems in the past few decades. Among the many constructive strategies developed to tackle this global issue, use of biopolymers like polyhydroxyalkanoates as sustainable alternatives for synthetic plastics has gained momentum. Despite their excellent material properties and significant biodegradability, polyhydroxyalkanoates still fails to compete with their synthetic counterparts majorly due to the high cost associated with their production and purification thereby limiting their commercialization. Usage of renewable feedstocks as substrates for polyhydroxyalkanoates production has been the thrust area of research to attain the sustainability tag. This review work attempts to provide insights about the recent developments in the production of polyhydroxyalkanoates using renewable feedstock along with various pretreatment methods used for substrate preparation for polyhydroxyalkanoates production. Further, the application of blends based on polyhydroxyalkanoates, and the challenges associated with the waste valorization based polyhydroxyalkanoates production strategy is elaborated in this review work.
    Matched MeSH terms: Biopolymers/chemistry
  2. Mukherjee S, Mukhopadhyay S, Pariatamby A, Ali Hashim M, Sahu JN, Sen Gupta B
    J Environ Sci (China), 2014 Sep 1;26(9):1851-60.
    PMID: 25193834 DOI: 10.1016/j.jes.2014.06.029
    Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
    Matched MeSH terms: Biopolymers/chemistry*
  3. Ahmad NH, Isa MIN
    Carbohydr Polym, 2016 Feb 10;137:426-432.
    PMID: 26686147 DOI: 10.1016/j.carbpol.2015.10.092
    Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system.
    Matched MeSH terms: Biopolymers/chemistry*
  4. Ishak MR, Sapuan SM, Leman Z, Rahman MZ, Anwar UM, Siregar JP
    Carbohydr Polym, 2013 Jan 16;91(2):699-710.
    PMID: 23121967 DOI: 10.1016/j.carbpol.2012.07.073
    Sugar palm (Arenga pinnata) is a multipurpose palm species from which a variety of foods and beverages, timber commodities, biofibres, biopolymers and biocomposites can be produced. Recently, it is being used as a source of renewable energy in the form of bio-ethanol via fermentation process of the sugar palm sap. Although numerous products can be produced from sugar palm, three products that are most prominent are palm sugar, fruits and fibres. This paper focuses mainly on the significance of fibres as they are highly durable, resistant to sea water and because they are available naturally in the form of woven fibre they are easy to process. Besides the recent advances in the research of sugar palm fibres and their composites, this paper also addresses the development of new biodegradable polymer derived from sugar palm starch, and presents reviews on fibre surface treatment, product development, and challenges and efforts on properties enhancement of sugar palm fibre composites.
    Matched MeSH terms: Biopolymers/chemistry*
  5. Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S
    Molecules, 2020 May 30;25(11).
    PMID: 32486124 DOI: 10.3390/molecules25112548
    Great efforts have been devoted to the invention of environmental sensors as the amount of water pollution has increased in recent decades. Chitosan, cellulose and nanocrystalline cellulose are examples of biopolymers that have been intensively studied due to their potential applications, particularly as sensors. Furthermore, the rapid use of conducting polymer materials as a sensing layer in environmental monitoring has also been developed. Thus, the incorporation of biopolymer and conducting polymer materials with various methods has shown promising potential with sensitively and selectively toward heavy metal ions. In this feature paper, selected recent and updated investigations are reviewed on biopolymer and conducting polymer-based materials in sensors aimed at the detection of heavy metal ions by optical methods. This review intends to provide sufficient evidence of the potential of polymer-based materials as sensing layers, and future outlooks are considered in developing surface plasmon resonance as an excellent and valid sensor for heavy metal ion detection.
    Matched MeSH terms: Biopolymers/chemistry*
  6. Oyekanmi AA, Saharudin NI, Hazwan CM, H P S AK, Olaiya NG, Abdullah CK, et al.
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924692 DOI: 10.3390/molecules26082254
    Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.
    Matched MeSH terms: Biopolymers/chemistry*
  7. Ramlli MA, Isa MI
    J Phys Chem B, 2016 11 10;120(44):11567-11573.
    PMID: 27723333
    Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transference number measurement (TNM) techniques were applied to investigate the complexation, structural, and ionic transport properties of and the dominant charge-carrier species in a solid biopolymer electrolyte (SBE) system based on carboxymethyl cellulose (CMC) doped with ammonium fluoride (NH4F), which was prepared via a solution casting technique. The SBEs were partially opaque in appearance, with no phase separation. The presence of interactions between the host polymer (CMC) and the ionic dopant (NH4F) was proven by FT-IR analysis at the C-O band. XRD spectra analyzed using Origin 8 software disclose that the degree of crystallinity (χc%) of the SBEs decreased with the addition of NH4F, indicating an increase in the amorphous nature of the SBEs. Analysis of the ionic transport properties reveals that the ionic conductivity of the SBEs is dependent on the ionic mobility (μ) and diffusion of ions (D). TNM analysis confirms that the SBEs are proton conductors.
    Matched MeSH terms: Biopolymers/chemistry*
  8. Charbgoo F, Ahmad MB, Darroudi M
    Int J Nanomedicine, 2017;12:1401-1413.
    PMID: 28260887 DOI: 10.2147/IJN.S124855
    CeO2 nanoparticles (NPs) have shown promising approaches as therapeutic agents in biology and medical sciences. The physicochemical properties of CeO2-NPs, such as size, agglomeration status in liquid, and surface charge, play important roles in the ultimate interactions of the NP with target cells. Recently, CeO2-NPs have been synthesized through several bio-directed methods applying natural and organic matrices as stabilizing agents in order to prepare biocompatible CeO2-NPs, thereby solving the challenges regarding safety, and providing the appropriate situation for their effective use in biomedicine. This review discusses the different green strategies for CeO2-NPs synthesis, their advantages and challenges that are to be overcome. In addition, this review focuses on recent progress in the potential application of CeO2-NPs in biological and medical fields. Exploiting biocompatible CeO2-NPs may improve outcomes profoundly with the promise of effective neurodegenerative therapy and multiple applications in nanobiotechnology.
    Matched MeSH terms: Biopolymers/chemistry
  9. Chai MN, Isa MI
    Sci Rep, 2016 Jun 06;6:27328.
    PMID: 27265642 DOI: 10.1038/srep27328
    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10(-4) S cm(-1) for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.
    Matched MeSH terms: Biopolymers/chemistry*
  10. Lim HP, Tey BT, Chan ES
    J Control Release, 2014 Jul 28;186:11-21.
    PMID: 24816070 DOI: 10.1016/j.jconrel.2014.04.042
    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.
    Matched MeSH terms: Biopolymers/chemistry
  11. Amid BT, Mirhosseini H
    Molecules, 2012 Sep 10;17(9):10875-92.
    PMID: 22964503 DOI: 10.3390/molecules170910875
    Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes), therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol), B (isopropanol and acetone), C (saturated barium hydroxide), and D (Fehling solution)] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05) improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B) resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C) led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D) most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.
    Matched MeSH terms: Biopolymers/chemistry*
  12. Sarker ZI, Elgadir MA, Ferdosh S, Akanda JH, Manap MY, Noda T
    Molecules, 2012;17(5):5733-44.
    PMID: 22628045 DOI: 10.3390/molecules17055733
    The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC), on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.
    Matched MeSH terms: Biopolymers/chemistry*
  13. Abd Elgadir M, Akanda MJ, Ferdosh S, Mehrnoush A, Karim AA, Noda T, et al.
    Molecules, 2012 Jan 09;17(1):584-97.
    PMID: 22231495 DOI: 10.3390/molecules17010584
    A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.
    Matched MeSH terms: Biopolymers/chemistry*
  14. Ho YC, Norli I, Alkarkhi AF, Morad N
    Water Sci Technol, 2009;60(3):771-81.
    PMID: 19657173 DOI: 10.2166/wst.2009.303
    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.
    Matched MeSH terms: Biopolymers/chemistry*
  15. Amid BT, Mirhosseini H
    Int J Mol Sci, 2012 Nov 13;13(11):14871-88.
    PMID: 23203099 DOI: 10.3390/ijms131114871
    In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.
    Matched MeSH terms: Biopolymers/chemistry*
  16. Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T
    Bioresour Technol, 2016 Jan;199:258-264.
    PMID: 26253419 DOI: 10.1016/j.biortech.2015.07.103
    The aim of this work was to characterize the natural low transition temperature mixtures (LTTMs) as promising green solvents for biomass pretreatment with the critical characteristics of cheap, biodegradable and renewable, which overcome the limitations of ionic liquids (ILs). The LTTMs were derived from inexpensive commercially available hydrogen bond acceptor (HBA) and l-malic acid as the hydrogen bond donor (HBD) in distinct molar ratios of starting materials and water. The peaks involved in the H-bonding shifted and became broader for the OH groups. The thermal properties of the LTTMs were not affected by water while the biopolymers solubility capacity of LTTMs was improved with the increased molar ratio of water and treatment temperature. The pretreatment of oil palm biomass was consistence with the screening on solubility of biopolymers. This work provides a cost-effective alternative to utilize microwave hydrothermal extracted green solvents such as malic acid from natural fruits and plants.
    Matched MeSH terms: Biopolymers/chemistry
  17. Kumar M, Tamilarasan R, Arthanareeswaran G, Ismail AF
    Ecotoxicol Environ Saf, 2015 Nov;121:164-73.
    PMID: 25913699 DOI: 10.1016/j.ecoenv.2015.04.007
    Recently noted that the methylene blue cause severe central nervous system toxicity. It is essential to optimize the methylene blue from aqueous environment. In this study, a comparison of an optimization of methylene blue was investigated by using modified Ca(2+) and Zn(2+) bio-polymer hydrogel beads. A batch mode study was conducted using various parameters like time, dye concentration, bio-polymer dose, pH and process temperature. The isotherms, kinetics, diffusion and thermodynamic studies were performed for feasibility of the optimization process. Freundlich and Langmuir isotherm equations were used for the prediction of isotherm parameters and correlated with dimensionless separation factor (RL). Pseudo-first order and pseudo-second order Lagegren's kinetic equations were used for the correlation of kinetic parameters. Intraparticle diffusion model was employed for diffusion of the optimization process. The Fourier Transform Infrared Spectroscopy (FTIR) shows different absorbent peaks of Ca(2+) and Zn(2+) beads and the morphology of the bio-polymer material analyzed with Scanning Electron Microscope (SEM). The TG & DTA studies show that good thermal stability with less humidity without production of any non-degraded products.
    Matched MeSH terms: Biopolymers/chemistry*
  18. Kee YL, Mukherjee S, Pariatamby A
    Chemosphere, 2015 Oct;136:111-7.
    PMID: 25966329 DOI: 10.1016/j.chemosphere.2015.04.074
    This study was carried out to evaluate the efficiency of Guar gum in removing Persistent Organic Pollutants (POPs), viz. phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate (DEHP), from farm effluent. The removal efficiency was compared with alum. The results indicated that 4.0 mg L(-1) of Guar gum at pH 7 could remove 99.70% and 99.99% of phenol,2,4-bis(1,1-dimethylethyl) and DEHP, respectively. Box Behnken design was used for optimization of the operating parameters for optimal POPs removal. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy studies were conducted on the flocs. SEM micrographs showed numerous void spaces in the flocs produced by Guar gum as opposed to those produced by alum. This indicated why Guar gum was more effective in capturing and removal of suspended particles and POPs as compared to alum. FTIR spectra indicated a shift in the bonding of functional groups in the flocs produced by Guar gum as compared to raw Guar gum powder signifying chemical attachment of the organics present in the effluent to the coagulant resulting in their removal. Guar gum is highly recommended as a substitute to chemical coagulant in treating POPs due to its non-toxic and biodegradable characteristics.
    Matched MeSH terms: Biopolymers/chemistry*
  19. Liew CW, Ramesh S
    Carbohydr Polym, 2015 Jun 25;124:222-8.
    PMID: 25839815 DOI: 10.1016/j.carbpol.2015.02.024
    Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram.
    Matched MeSH terms: Biopolymers/chemistry*
  20. Khan TA, Peh KK, Ch'ng HS
    J Pharm Pharm Sci, 2002 Sep-Dec;5(3):205-12.
    PMID: 12553887
    To investigate and compare the effect of three analytical methods, hydrogen bromide titrimetry (HBr titrimetry), infrared spectroscopy (IR spectroscopy), and first derivative UV-spectrophotometry (FDUV-spectrophotometry) in the determination of degree of deacetylation (DD) of chitosan.
    Matched MeSH terms: Biopolymers/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links