Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Athani A, Ghazali NNN, Anjum Badruddin I, Kamangar S, Salman Ahmed NJ, Honnutagi A
    Biomed Mater Eng, 2023;34(1):13-35.
    PMID: 36278331 DOI: 10.3233/BME-211333
    BACKGROUND: Coronary arteries disease has been reported as one of the principal roots of deaths worldwide.

    OBJECTIVE: The aim of this study is to analyze the multiphase pulsatile blood flow in the left coronary artery tree with stenosis.

    METHODS: The 3D left coronary artery model was reconstructed using 2D computerized tomography (CT) scan images. The Red Blood Cell (RBC) and varying hemodynamic parameters for single and multiphase blood flow conditions were analyzed.

    RESULTS: Results asserted that the multiphase blood flow modeling has a maximum velocity of 1.017 m/s and1.339 m/s at the stenosed region during the systolic and diastolic phases respectively. The increase in Wall Shear Stress (WSS) observed at the stenosed region during the diastole phase as compared during the systolic phase. It was also observed that the highest Oscillatory Shear Index (OSI) regions are found in the downstream area of stenosis and across the bifurcations. The increase in RBCs velocity from 0.45 m/s to 0.6 m/s across the stenosis was also noticed.

    CONCLUSION: The computational multiphase blood flow analysis improves the understanding and accuracy of the complex flow conditions of blood elements (RBC and Plasma) and provides the progression of the disease development in the coronary arteries. This study helps to enhance the diagnosis of the blocked (stenosed) arteries more precisely compared to the single-phase blood flow modeling.

    Matched MeSH terms: Blood Flow Velocity/physiology
  2. Koosha N, Mosavi V, Kheirollah J, Najafi N, Abdi N, Alizadeh A, et al.
    J Therm Biol, 2023 Oct;117:103718.
    PMID: 37812951 DOI: 10.1016/j.jtherbio.2023.103718
    The study of blood flow in obstructed arteries is a significant focus in computational fluid dynamics, particularly in the field of biomedicine. The primary objective of this research is to investigate the impact of pulsating blood velocity on heat transfer within biological systems, with a specific focus on blood flow in obstructed arteries. To achieve this goal, a comprehensive 3D model representing a straight, constricted blood vessel has been developed. This model incorporates periodic, unsteady, Newtonian blood flow along with the presence of gold and silver nanoparticles. Leveraging the Finite Element Method (FEM), the Navier-Stokes and energy equations have been rigorously solved. Through the investigation, it is aim to shed light on how alterations in the pulsation rate and the volume fraction of nanoparticles influence both temperature distribution and velocity profiles within the system. The present study findings unequivocally highlight that the behavior of pulsatile nanofluid flow significantly impacts the velocity field and heat transfer performance. However, it is imperative to note that the extent of this influence varies depending on the specific volume fractions involved. Specifically, higher volume fractions of nanofluids correlate with elevated velocities at the center of the vessel and decreased velocities near the vessel walls. This pattern also extends to the temperature distribution and heat flux within the vessel, further underscoring the paramount importance of pulsatile flow dynamics in biomedicine and computational fluid dynamics research. Besides, results revealed that the presence of occlusion significantly affects the heat transfer and fluid flow.
    Matched MeSH terms: Blood Flow Velocity/physiology
  3. Zakaria MS, Ismail F, Tamagawa M, Aziz AFA, Wiriadidjaja S, Basri AA, et al.
    Med Biol Eng Comput, 2017 Sep;55(9):1519-1548.
    PMID: 28744828 DOI: 10.1007/s11517-017-1688-9
    Even though the mechanical heart valve (MHV) has been used routinely in clinical practice for over 60 years, the occurrence of serious complications such as blood clotting remains to be elucidated. This paper reviews the progress that has been made over the years in terms of numerical simulation method and the contribution of abnormal flow toward blood clotting from MHVs in the aortic position. It is believed that this review would likely be of interest to some readers in various disciplines, such as engineers, scientists, mathematicians and surgeons, to understand the phenomenon of blood clotting in MHVs through computational fluid dynamics.
    Matched MeSH terms: Blood Flow Velocity/physiology
  4. Zain NM, Ismail Z
    PLoS One, 2023;18(2):e0276576.
    PMID: 36780455 DOI: 10.1371/journal.pone.0276576
    This paper presents a numerical analysis of blood flow in a diseased vessel within the presence of an external magnetic field. The blood flow was considered to be incompressible and fully developed, in that the non-Newtonian nature of the fluid was characterised as a generalised power law model for shear-thinning, Newtonian, and shear-thickening fluids. The impact of a transverse directed external magnetic field on blood flow through a stenosed bifurcated artery was investigated. The arterial geometry was considered as a bifurcated channel with overlapping shaped stenosis. The problem was treated mathematically using the Galerkin Least-Squares (GLS) method. The implementation of this numerical method managed to overcome the numerical instability faced by the classical Galerkin technique when adopted to a highly viscous flow. The benefit of GLS in circumventing the Ladyzhenskaya-Babuška-Brezzi (LBB) condition was utilized by evaluating both the velocity and pressure components at corner nodes of a unstructured triangular element. The non-linearity that emerged from the convective terms was then treated using the Newton-Raphson method, while the numerical integrals were computed using a Gaussian quadrature rule with six quadrature points. The findings obtained from this study were then compared with available results from the literature as well as Comsol multiphysics software to verify the accuracy and validity of the numerical algorithms. It was found that the application of magnetic field was able to overcome flow reversal by 39% for a shear-thinning fluid, 26% for a Newtonian fluid, and 27% for a shear-thickening fluid. The negative pressure and steep wall shear stress which occurs at the extremities of an overlapping stenosis throat were diminished by rise in magnetic intensity. This prevented thrombosis occurrence and produced a uniform calm flow.
    Matched MeSH terms: Blood Flow Velocity/physiology
  5. Jamil DF, Saleem S, Roslan R, Al-Mubaddel FS, Rahimi-Gorji M, Issakhov A, et al.
    Comput Methods Programs Biomed, 2021 May;203:106044.
    PMID: 33756187 DOI: 10.1016/j.cmpb.2021.106044
    BACKGROUND AND OBJECTIVE: Arterial diseases would lead to several serious disorders in the cardiovascular system such as atherosclerosis. These disorders are mainly caused by the presence of fatty deposits, cholesterol and lipoproteins inside blood vessel. This paper deals with the analysis of non-Newtonian magnetic blood flow in an inclined stenosed artery.

    METHODS: The Casson fluid was used to model the blood that flows under the influences of uniformly distributed magnetic field and oscillating pressure gradient. The governing fractional differential equations were expressed using the Caputo Fabrizio fractional derivative without singular kernel.

    RESULTS: The analytical solutions of velocities for non-Newtonian model were then calculated by means of Laplace and finite Hankel transforms. These velocities were then presented graphically. The result shows that the velocity increases with respect to Reynolds number and Casson parameter, while decreases when Hartmann number increases.

    CONCLUSIONS: Casson blood was treated as the non-Newtonian fluid. The MHD blood flow was accelerated by pressure gradient. These findings are beneficial for studying atherosclerosis therapy, the diagnosis and therapeutic treatment of some medical problems.

    Matched MeSH terms: Blood Flow Velocity
  6. Athani A, Ghazali NNN, Badruddin IA, Kamangar S, Anqi AE, Algahtani A
    Biomed Mater Eng, 2022;33(1):13-30.
    PMID: 34366314 DOI: 10.3233/BME-201171
    BACKGROUND: The blood flow in the human artery has been a subject of sincere interest due to its prime importance linked with human health. The hemodynamic study has revealed an essential aspect of blood flow that eventually proved to be paramount to make a correct decision to treat patients suffering from cardiac disease.

    OBJECTIVE: The current study aims to elucidate the two-way fluid-structure interaction (FSI) analysis of the blood flow and the effect of stenosis on hemodynamic parameters.

    METHODS: A patient-specific 3D model of the left coronary artery was constructed based on computed tomography (CT) images. The blood is assumed to be incompressible, homogenous, and behaves as Non-Newtonian, while the artery is considered as a nonlinear elastic, anisotropic, and incompressible material. Pulsatile flow conditions were applied at the boundary. Two-way coupled FSI modeling approach was used between fluid and solid domain. The hemodynamic parameters such as the pressure, velocity streamline, and wall shear stress were analyzed in the fluid domain and the solid domain deformation.

    RESULTS: The simulated results reveal that pressure drop exists in the vicinity of stenosis and a recirculation region after the stenosis. It was noted that stenosis leads to high wall stress. The results also demonstrate an overestimation of wall shear stress and velocity in the rigid wall CFD model compared to the FSI model.

    Matched MeSH terms: Blood Flow Velocity
  7. Ahamad NA, Kamangar S, Badruddin IA
    Biomed Mater Eng, 2018;29(3):319-332.
    PMID: 29578467 DOI: 10.3233/BME-181734
    The current study investigates the curvature effect due to various angles of curvature on the blood flow in human artery. The stenosis is considered to have three sizes 70%, 80% and 90% blockage before the curve section of artery. Numerical study of four different angle of curvature was considered to understand the flow behavior of artery having various curvatures, on the hemodynamics factors that includes drop in arterial pressure, flow velocity as well as wall shear stress. It was found that, the augmentation of the flow resistance due to the curvature increases in presence of stenosis. It was also noted that the wall shear is higher at the outer wall as compared to the inside wall in four models considered. Results showed that both the curvature of artery and size of the stenosis have significant impact. These two factors should be considered by cardiologist to assess the complexity of stenosis.
    Matched MeSH terms: Blood Flow Velocity*
  8. Bhatti MS, Tang TB, Laude A
    PLoS One, 2017;12(7):e0181512.
    PMID: 28742142 DOI: 10.1371/journal.pone.0181512
    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma.
    Matched MeSH terms: Blood Flow Velocity*
  9. Chan BT, Yeoh HK, Liew YM, Aziz YFA, Sridhar GS, Hamilton-Craig C, et al.
    Med Biol Eng Comput, 2017 Oct;55(10):1883-1893.
    PMID: 28321684 DOI: 10.1007/s11517-017-1639-5
    This study aims to investigate the measurement of left ventricular flow propagation velocity, V p, using phase contrast magnetic resonance imaging and to assess the discrepancies resulting from inflow jet direction and individual left ventricular size. Three V p measuring techniques, namely non-adaptive (NA), adaptive positions (AP) and adaptive vectors (AV) method, were suggested and compared. We performed the comparison on nine healthy volunteers and nine post-infarct patients at four measurement positions, respectively, at one-third, one-half, two-thirds and the conventional 4 cm distances from the mitral valve leaflet into the left ventricle. We found that the V p measurement was affected by both the inflow jet direction and measurement positions. Both NA and AP methods overestimated V p, especially in dilated left ventricles, while the AV method showed the strongest correlation with the isovolumic relaxation myocardial strain rate (r = 0.53, p 
    Matched MeSH terms: Blood Flow Velocity/physiology*
  10. Alsemiry RD, Sarifuddin, Mandal PK, Sayed HM, Amin N
    Biomed Res Int, 2020;2020:7609562.
    PMID: 32090110 DOI: 10.1155/2020/7609562
    The simultaneous effect of flexible wall and multiple stenoses on the flow and mass transfer of blood is investigated through numerical computation and simulations. The solution is obtained using the Marker and Cell technique on an axisymmetric model of Newtonian blood flow. The results compare favorably with physical observations where the pulsatile boundary condition and double stenoses result in a higher pressure drop across the stenoses. The streamlines, the iso-concentration lines, the Sherwood number, and the mass concentration variations along the entire wall segment provide a comprehensive analysis of the mass transport characteristics. The double stenoses and pulsatile inlet conditions increase the number of recirculation regions and effect a higher mass transfer rate at the throat, whereby more mass is expected to accumulate and cause further stenosis.
    Matched MeSH terms: Blood Flow Velocity/physiology
  11. Mokhtar NH, Abas A, Razak NA, Hamid MNA, Teong SL
    J Theor Biol, 2017 11 21;433:73-84.
    PMID: 28844907 DOI: 10.1016/j.jtbi.2017.08.016
    Proper design of stent for application at specific aneurysm effect arteries could help to reduce the issues with thrombosis and aneurysm. In this paper, four types of stent configuration namely half-Y (6 mm), half-Y (4 mm), cross-bar, and full-Y configuration will implanted on real 3D artery bifurcation aneurysm effected arteries. Comparisons were then conducted based on the flow patterns after stent placement using both LBM-based solver and PIV experimental findings. According to the data obtained from all 4 stent designs, the flow profiles and the computed velocity from both methods were in agreement with each other. Both methods found that half-Y (6 mm) stent configuration is by far the best configuration in reducing the blood velocity at the vicinity of the aneurysm sac. The analysis also show that the half-Y (6 mm) stent configuration recorded the highest percentage of velocity reduction and managed to substantially reduce the pressure at the bifurcation region. This high flow velocity reduction through the use of half-Y stent could consequently promote the formation of thrombus thereby reducing the risk of rupture in the aneurysm sac.
    Matched MeSH terms: Blood Flow Velocity
  12. Ismail A, Bhatti MS, Faye I, Lu CK, Laude A, Tang TB
    Graefes Arch Clin Exp Ophthalmol, 2018 Sep;256(9):1711-1721.
    PMID: 29876732 DOI: 10.1007/s00417-018-4030-9
    PURPOSE: To evaluate and compare the temporal changes in pulse waveform parameters of ocular blood flow (OBF) between non-habitual and habitual groups due to caffeine intake.

    METHOD: This study was conducted on 19 healthy subjects (non-habitual 8; habitual 11), non-smoking and between 21 and 30 years of age. Using laser speckle flowgraphy (LSFG), three areas of optical nerve head were analyzed which are vessel, tissue, and overall, each with ten pulse waveform parameters, namely mean blur rate (MBR), fluctuation, skew, blowout score (BOS), blowout time (BOT), rising rate, falling rate, flow acceleration index (FAI), acceleration time index (ATI), and resistive index (RI). Two-way mixed ANOVA was used to determine the difference between every two groups where p 

    Matched MeSH terms: Blood Flow Velocity/physiology
  13. Rehman A, Rahman AR, Rasool AH
    J Hum Hypertens, 2002 Apr;16(4):261-6.
    PMID: 11967720
    The objective of this study was to examine the effect of angiotensin II (Ang II) and angiotensin II type 1 (AT(1)) receptor blockade on pulse wave velocity (PWV) in healthy humans. We studied nine young male volunteers in a double-blind randomised crossover design. Carotid-femoral PWV (an index of arterial stiffness) was measured by using a Complior machine. Subjects were previously treated for 3 days with once-daily dose of either a placebo or valsartan 80 mg. On the third day, they were infused with either placebo or 5 ng/kg/min of Ang II over 30 min. Subjects thus received placebo capsule + placebo infusion (P), valsartan + placebo infusion (V), placebo + Ang II infusion (A), and valsartan + Ang II infusion (VA) combinations. Heart rate (HR), blood pressure and PWV were recorded at baseline and then every 10 min during infusion and once after the end of infusion. There were significant increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) with A compared with P (P = 0.002, P = 0.002, P = 0.001 respectively). These rises in blood pressure were completely blocked by valsartan. A significant rise in PWV by A was seen compared with P (8.38 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = 0.013) and was completely blocked by valsartan; VA compared with P (7.27 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = NS). Multiple linear regression analysis showed that blockade of Ang II induced increase in blood pressure by valsartan contributed to only 30% of the total reduction in Ang II induced rise in PWV (R(2) = 0.306). The conclusions were that valsartan completely blocks the effect of Ang II on PWV. The effect of Ang II on PWV is mediated through AT(1)receptors. Reduction in PWV by Ang II antagonist is not fully explained by its pressure lowering effect of Ang II and may be partially independent of its effect on blood pressure.
    Matched MeSH terms: Blood Flow Velocity/drug effects*
  14. Rasool AH, Yuen KH, Yusoff K, Wong AR, Rahman AR
    J Nutr Sci Vitaminol (Tokyo), 2006 Dec;52(6):473-8.
    PMID: 17330512
    Tocotrienols are a class of vitamin E reported to be potent antioxidants, besides having the ability to inhibit the HMG-CoA reductase enzyme. This study assessed the effects of 3 doses of tocotrienol-rich vitamin E (TRE) on plasma tocotrienol isomer concentration, arterial compliance, plasma total antioxidant status (TAS), aortic systolic blood pressure (ASBP), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) in healthy males.

    METHODOLOGY: This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken.

    RESULTS: Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS.

    CONCLUSION: TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienol concentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.

    Matched MeSH terms: Blood Flow Velocity/drug effects
  15. Kamangar S, Kalimuthu G, Badruddin IA, Badarudin A, Ahmed NJ, Khan TM
    ScientificWorldJournal, 2014;2014:354946.
    PMID: 25258722 DOI: 10.1155/2014/354946
    The present study deals with the functional severity of a coronary artery stenosis assessed by the fractional flow reserve (FFR). The effects of different geometrical shapes of lesion on the diagnostic parameters are unknown. In this study, 3D computational simulation of blood flow in three different geometrical shapes of stenosis (triangular, elliptical, and trapezium) is considered in steady and transient conditions for 70% (moderate), 80% (intermediate), and 90% (severe) area stenosis (AS). For a given percentage AS, the variation of diagnostic parameters which are derived from pressure drop across the stenosis was found in three different geometrical shapes of stenosis and it was observed that FFR is higher in triangular shape and lower in trapezium shape. The pressure drop coefficient (CDP) was higher in trapezium shape and lower in triangular model whereas the LFC shows opposite trend. From the clinical perspective, the relationship between percentage AS and FFR is linear and inversely related in all the three models. A cut-off value of 0.75 for FFR was observed at 76.5% AS in trapezium model, 79.5% in elliptical model, and 82.7% AS for the triangular shaped model. The misinterpretation of the functional severity of the stenosis is in the region of 76.5%-82.7 % AS from different shapes of stenosis models.
    Matched MeSH terms: Blood Flow Velocity
  16. Wan Ab Naim WN, Ganesan P, Al Abed A, Lim E
    PMID: 23365977 DOI: 10.1109/EMBC.2012.6346016
    The effects of curvature and tapering on the flow progression in the aorta were studied using numerical simulations on a realistic geometrical model of the aorta and three different versions of the ideal aorta models. The results showed that tapering increases velocity magnitude and wall shear stress while local curvatures affect the skewness of the velocity profile, the thickness of the boundary layer as well as the recirculation regions. Wall shear stress distribution in the aorta serves as an important determinant in the progression of arterial disease.
    Matched MeSH terms: Blood Flow Velocity
  17. Alwi M, Hamid ZA, Zambahari R
    Br Heart J, 1992 Jul;68(1):6-8.
    PMID: 1515294
    Continuous wave Doppler recordings of the turbulent jet through the restrictive orifice of a left atrial partition in a patient with corrected transposition of the great arteries and cor triatriatum showed alternate bands of high intensity diastolic and low intensity systolic signals with preservation of the normal configuration of the diastolic E and A peaks. It is thought that Doppler studies in cor triatriatum will provide useful complementary haemodynamic information in the echocardiographic diagnosis of this anomaly.
    Matched MeSH terms: Blood Flow Velocity
  18. Toulah FH, El-Aswad BEW, Harba NM, Naguib YM
    Trop Biomed, 2018 Dec 01;35(4):893-907.
    PMID: 33601839
    High-fat diet (HFD) can cause hyperlipidemia, fatty liver and cardiovascular disorders. Herein, we evaluated therapeutic effects and possible underlying mechanisms of actions of Schistosoma mansoni soluble egg antigen (SEA) against experimental HFD induced dyslipidemia, hepatic and cardiovascular pathology. Forty Swiss albino mice were divided into four groups (10 each); mice fed standard diet (SD), mice fed HFD, mice fed HFD for 8 weeks then infected by S. mansoni cercaria (HFD+I) and mice fed HFD for 8 weeks then treated with SEA (HFD+SEA), all mice were euthanized 16 weeks after starting the experiment. HFD+SEA mice showed significantly (p<0.001) reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG), and significantly (p<0.05) increased high-density lipoprotein cholesterol (HDL-C) comparing to HFD mice with non-significant difference with HFD+I mice group. Doppler flowmetry showed significantly (p<0.01) lower arterial resistance and significantly (p<0.05) higher blood flow velocity in HFD+SEA and HFD+I mice groups than HFD mice. HFD+SEA mice revealed improving in liver and aortic pathology and these were better than HFD+I mice group. HFD+SEA and HFD+I mice groups had less myocardium lipid deposits, but still showing some congested blood vessels. HFD myocardium revealed strong CD34+ expression on immunohistochemistry study, while that of HFD+SEA showed weak and HFD+I mice had moderate expressions. HFD+SEA mice had significantly (p<0.01) lower serum IL-1β and vascular endothelial growth factor (VEGF) and significantly (p<0.001) higher serum transforming growth factor beta 1 (TGF-β1) and IL-10 than HFD mice with non-significant difference with HFD+I mice. In conclusion, SEA lowered serum lipids, improved aortic function, decreased liver and cardiovascular pathology in HFD mice, so, it is recommended to purify active molecules from SEA to develop anti-dyslipidemic treatment.
    Matched MeSH terms: Blood Flow Velocity
  19. Kamangar S, Badruddin IA, Ameer Ahamad N, Soudagar MEM, Govindaraju K, Nik-Ghazali N, et al.
    Biomed Mater Eng, 2017;28(3):257-266.
    PMID: 28527189 DOI: 10.3233/BME-171672
    The current study investigates the effect of multi stenosis on the hemodynamic parameters such as wall pressure, velocity and wall shear stress in the realistic left coronary artery. Patients CT scan image data of normal and diseased left coronary artery was chosen for the reconstruction of 3D coronary artery models. The diseased 3D model of left coronary artery shows a narrowing of more than 70% and 80% of area stenosis (AS) at the left main stem (LMS) and left circumflex (LCX) respectively. The results show that the decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. The maximum pressure drop was noted across the 80% AS at the left circumflex branch. The recirculation zone was also observed immediate to the stenosis and highest wall shear stress was found across the 80% area stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding on the hemodynamics in realistic coronary artery.
    Matched MeSH terms: Blood Flow Velocity
  20. Kamangar S, Badruddin IA, Badarudin A, Nik-Ghazali N, Govindaraju K, Salman Ahmed NJ, et al.
    Comput Methods Biomech Biomed Engin, 2017 Mar;20(4):365-372.
    PMID: 27612619 DOI: 10.1080/10255842.2016.1233402
    The current study investigates the hyperemic flow effects on heamodynamics parameters such as velocity, wall shear stress in 3D coronary artery models with and without stenosis. The hyperemic flow is used to evaluate the functional significance of stenosis in the current era. Patients CT scan data of having healthy and coronary artery disease was chosen for the reconstruction of 3D coronary artery models. The diseased 3D models of coronary artery shows a narrowing of >50% lumen area. Computational fluid dynamics was performed to simulate the hyperemic flow condition. The results showed that the recirculation zone was observed immediate to the stenosis and highest wall shear stress was observed across the stenosis. The decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding of hyperemic flow effect under both conditions.
    Matched MeSH terms: Blood Flow Velocity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links