INTRODUCTION: This study ascertains the minimum level of follow-up exercise required to maintain bone gains induced by an 8-week jumping exercise in rats.
METHODS: Twelve groups of 12-week old rats (n = 10 rats per group) were given either no exercise for 8 (8S) or 32 weeks (32S), or received 8 weeks of standard training program (8STP) that consisted of 200 jumps per week, given at 40 jumps per day for 5 days per week, followed by 24 weeks of exercise at loads of either 40 or 20 or 10 jumps per day, for either 5, or 3, or 1 day/week. Bone mass, strength, and morphometric properties were measured in the right tibia. Data were analyzed using one-way analyses of variance.
RESULTS: Bone mass, strength, mid-shaft periosteal perimeter and cortical area were significantly (p < 0.05) higher in the rats given 8STP than that in the 8S group. The minimal level of exercise required to maintain the bone gains was 31, 36, 25, and 21 jumps per week for mass, strength, periosteal perimeter and cortical area, respectively.
CONCLUSIONS: Eight weeks of jumping exercise-induced bone gains could be maintained for a period of 24 weeks with follow-up exercise consisting of 11% to 18% of the initial exercise load.
INTRODUCTION AND OBJECTIVE: T-score discordance between hip and spine is a common problem in bone mineral density assessment. A difference ≥ 1 standard deviation (SD) (regardless of diagnostic class) is considered minor, and a difference more than one diagnostic class is considered major discordance. This study aimed to determine the prevalence and factors of hip and spine T-score discordance in a population aged ≥ 40 years in Klang Valley, Malaysia.
SUBJECTS AND METHODS: In this cross-sectional study, subjects answered a demographic questionnaire and underwent body composition and bone health assessment using dual-energy X-ray absorptiometry. Chi-square and binary logistic regression analysis were used to assess the prevalence of T-score discordance among the subjects.
RESULTS: A total of 786 Malaysians (382 men, 404 women) subjects were recruited. The prevalence of minor and major discordance was 30.3% and 2.3%, respectively. Overall, factors related to T-score discordance were advanced age, decreased height, and being physically active. Sub-analysis showed that decreased height and being physically active predicted T-score discordance in men, being menopausal and Indian (vs Chinese) were predictors in women.
CONCLUSIONS: T-score discordance between hip and spine is common among Malaysian middle-aged and elderly population. Diagnosis of osteopenia/osteoporosis should be based on the T-score of more than one skeletal site as per the current recommendations.
DESIGN & PARTICIPANTS: 332 mothers (197 NGTF, 56 SGTF-U, 79 SGTF-T) aged 41.2±5.3 years (mean±SD) and 326 paired children assessed 9.3±1.0 years after birth for (i) body mass index (BMI); (ii) lean, fat, and bone mass by dual-energy X-ray absorptiometry; (iii) blood pressure, augmentation index, and aortic pulse-wave-velocity; and (iv) thyroid function, lipids, insulin, and adiponectin. The difference between group means was compared using linear regression.
RESULTS: Offspring's measurements were similar between groups. Although maternal BMI was similar between groups at CATS-I, after 9 years (at CATS-II) SGTF-U mothers showed higher BMI (median [interquartile ratio] 28.3 [24.6-32.6] kg/m2) compared with NGTF (25.8 [22.9-30.0] kg/m2; P = 0.029), driven by fat mass increase. At CATS-II SGTF-U mothers also had higher thyroid-stimulating hormone (TSH) values (2.45 [1.43-3.50] mU/L) than NGTF (1.54 [1.12-2.07] mU/L; P = 0.015), since 64% had never received levothyroxine. At CATS-II, SGTF-T mothers had BMI (25.8 [23.1-29.8] kg/m2, P = 0.672) and TSH (1.68 [0.89-2.96] mU/L; P = 0.474) values similar to NGTF mothers.
CONCLUSIONS: Levothyroxine supplementation of women with SGTF did not affect long-term offspring anthropometric, bone, and cardiometabolic measurements. However, absence of treatment was associated with sustained long-term increase in BMI and fat mass in women with SGTF.
OBJECTIVE: The study examines the effect of F. deltoidea on bone histomorphometric parameters, oxidative stress, and turnover markers in diabetic rats.
MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats (n = 6 animals per group) received one of the following treatments via gavage for 8 weeks: saline (diabetic control), metformin (1000 mg/kg bwt), and methanol leaves extract of F. deltoidea (1000 mg/kg bwt). A group of healthy rats served as normal control. The femoral bones were excised and scanned ex vivo using micro-computed tomography (micro-CT) for histomorphometric analysis. The serum levels of insulin, oxidative stress, and bone turnover markers were determined by ELISA assays.
RESULTS: Treatment of diabetic rats with F. deltoidea could significantly increase bone mineral density (BMD) (from 526.98 ± 11.87 to 637.74 ± 3.90). Higher levels of insulin (2.41 ± 0.08 vs. 1.58 ± 0.16), osteocalcin (155.66 ± 4.11 vs. 14.35 ± 0.97), and total bone n-3 PUFA (2.34 ± 0.47 vs. 1.44 ± 0.18) in parallel with the presence of chondrocyte hypertrophy were also observed following F. deltoidea treatment compared to diabetic control.
CONCLUSIONS: F. deltoidea could prevent diabetic osteoporosis by enhancing osteogenesis and inhibiting bone oxidative stress. These findings support the potential use of F. deltoidea for osteoporosis therapy in diabetes.
DISCUSSION: Several treatment options are available for different stages of prostate cancer. Hormone therapy known as androgen deprivation therapy (ADT) is the first line treatment used to treat advanced prostate cancer. Chemical castration by gonadotropin-releasing hormone agonists suppresses lutenizing hormone production, which in turn inhibits the production of testosterone and dihydrotestosterone. This will prevent the growth of prostate cancer cells. However, ADT causes deleterious effects on bone health because the androgens are essential in preserving optimal bone health in men.
CONCLUSION: Various observational studies showed that long-term ADT for advanced or metastatic prostate cancer was associated with decreased bone mineral density, as well as altered body composition that might affect bone health. Considering the potential impact of osteoporotic fracture, interventions to mitigate these skeletal adverse effects should be considered by physicians when initiating ADT on their patients.
INTRODUCTION: The major goal of this study was to determine the effects of short-term group-based step aerobics (GBSA) exercise on the bone metabolism, bone mineral density (BMD), and functional fitness of postmenopausal women (PMW) with low bone mass.
METHODS: Forty-eight PMW (aged 58.2 ± 3.5 years) with low bone mass (lumbar spine BMD T-score of -2.00 ± 0.67) were recruited and randomly assigned to an exercise group (EG) or to a control group (CG). Participants from the EG attended a progressive 10-week GBSA exercise at an intensity of 75-85 % of heart rate reserve, 90 min per session, and three sessions per week. Serum bone metabolic markers (C-terminal telopeptide of type 1 collagen [CTX] and osteocalcin), BMD, and functional fitness components were measured before and after the training program. Mixed-models repeated measures method was used to compare differences between the groups (α = 0.05).
RESULTS: After the 10-week intervention period, there was no significant exercise program by time interaction for CTX; however, the percent change for CTX was significantly different between the groups (EG = -13.1 ± 24.4 % vs. CG = 11.0 ± 51.5 %, P bone metabolism and general health by significantly reduced bone resorption activity and improved functional fitness in PMW with low bone mass. This suggested GBSA could be adopted as a form of group-based exercise for senior community.