Displaying all 11 publications

Abstract:
Sort:
  1. Choudhary R, Vecstaudza J, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:89-100.
    PMID: 27524000 DOI: 10.1016/j.msec.2016.04.110
    Diopside was synthesized from biowaste (Eggshell) by sol-gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications.
    Matched MeSH terms: Bone Marrow Cells/metabolism*
  2. Yap FL, Cheong SK, Ammu R, Leong CF
    Malays J Pathol, 2009 Dec;31(2):113-20.
    PMID: 20514854 MyJurnal
    In this study, we evaluated the biological properties of human mesenchymal stem cells transfected (hMSC) with a plasmid vector expressing human cytokine interleukin-12 (IL-12). Surface markers were analysed by immunophenotyping using flow cytometry. Differentiation capability was evaluated towards adipogenesis and osteogenesis. We demonstrated that successfully transfected hMSC retained their surface immunophenotypes and differentiation potential into adipocytes and osteocytes. These results indicate that hMSC may be a suitable vehicle for gene transduction.
    Matched MeSH terms: Bone Marrow Cells/metabolism
  3. Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, et al.
    J Tissue Eng Regen Med, 2015 Dec;9(12):E252-66.
    PMID: 23229816 DOI: 10.1002/term.1663
    The discovery of mesenchymal stem cells (MSCs) from a myriad of tissues has triggered the initiative of establishing tailor-made stem cells for disease-specific therapy. Nevertheless, lack of understanding on the inherent differential propensities of these cells may restrict their clinical outcome. Therefore, a comprehensive study was done to compare the proliferation, differentiation, expression of cell surface markers and gene profiling of stem cells isolated from different sources, viz. bone marrow, Wharton's jelly, adipose tissue and dental pulp. We found that although all MSCs were phenotypically similar to each other, Wharton's jelly (WJ) MSCs and dental pulp stem cells (DPSCs) were highly proliferative as compared to bone marrow (BM) MSCs and adipose tissue (AD) MSCs. Moreover, indistinguishable cell surface characteristics and differentiation capacity were confirmed to be similar among all cell types. Based on gene expression profiling, we postulate that BM-MSCs constitutively expressed genes related to inflammation and immunodulation, whereas genes implicated in tissue development were highly expressed in AD-MSCs. Furthermore, the transcriptome profiling of WJ-MSCs and DPSCs revealed an inherent bias towards the neuro-ectoderm lineage. Based on our findings, we believe that there is no unique master mesenchymal stem cell that is appropriate to treat all target diseases. More precisely, MSCs from different sources exhibit distinct and unique gene expression signatures that make them competent to give rise to specific lineages rather than others. Therefore, stem cells should be subjected to rigorous characterization and utmost vigilance needs to be adopted in order to choose the best cellular source for a particular disease.
    Matched MeSH terms: Bone Marrow Cells/metabolism*
  4. Leong CF, Raudhawati O, Cheong SK, Sivagengei K, Noor Hamidah H
    Pathology, 2003 Oct;35(5):422-7.
    PMID: 14555387
    AIMS: Epithelial membrane antigen (EMA) or MUC1 belongs to a heterogeneous group of heavily glycosylated proteins and is expressed in most normal and epithelial neoplastic cells. EMA is also expressed in plasma cells, anaplastic large cell lymphoma (Ki-1 antigen), malignant histiocytosis and erythroleukaemia. In 1996, Cheong et al. (Hematology 1996; 1: 223) demonstrated the positive expression of EMA in monoblasts. Since there were very few useful markers for differentiating subtypes of acute myeloid leukaemia with a monocytic component from the those without, a study was conducted to evaluate the prevalence of EMA expression and its relationship with known markers for monocytic-macrophage lineage (CD11c, CD14 and intracellular CD68) in monocytes and monoblasts.

    METHODS: EMA detection was performed by flow cytometry in monocytes and monoblasts. EMA expression was compared with other known markers of monocytic-macrophage lineage (CD11c, CD14 and intracellular CD68). Samples of purified monocytes were obtained from 20 healthy volunteers. Twenty-two cases of monocytic AML (M4 and M5) were studied and controls were selected from 20 cases of acute lymphoblastic leukaemia (ALL) and 18 cases of non-monocytic AML (M0, M1, M2, M3, and M7).

    RESULTS: EMA was shown to be expressed strongly on the surface of all purified monocytes. EMA expression was observed on blast cells in 18/22 (81.8%) cases of AML M4 and M5, but not in that of non-monocytic AML or ALL. In this study EMA monoclonal antibody has demonstrated a strong association (P<0.001) with all the other known markers of monocytic-macrophage lineage in acute leukaemia subtypes. EMA had also shown 100% specificity and 81.8% sensitivity in the diagnosis of AML M4 and M5.

    CONCLUSIONS: The monoclonal antibody EMA (clone E29) is a useful marker in the classification of acute myeloid leukaemia and can be used as a supplementary analysis for the diagnosis of acute leukemia with monocytic involvement.

    Matched MeSH terms: Bone Marrow Cells/metabolism
  5. Ude CC, Chen HC, Norhamdan MY, Azizi BM, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Sep;18(3):355-367.
    PMID: 28667462 DOI: 10.1007/s10561-017-9638-1
    In our quest to standardize our formula for a clinical trial, transforming growth factor-beta3 (TGF-β3) alone and in combination with bone morphogenetic protein-6 (BMP-6) were evaluated for their effectiveness in cartilage differentiation. Bone Marrow Stem Cells (BMSCs) and Adipose Derived Stem Cells (ADSCs) were induced to chondrogenic lineage using two different media. Native chondrocytes served as positive control. ADSCs and BMSCs proved multipotency by tri-lineage differentiations. ADSC has significantly higher growth kinetics compare to Chondrocyte only p ≤ 0.05. Using TGF-β3 alone, BMSC revealed higher expressions for hyaline cartilage genes compare to ADSCs. Chondrocyte has significantly higher early chondrogenic markers expression to ADSCs and BMSCs, while BMSCs was only higher to ADSC at chondroadherin, p ≤ 0.0001. On mature chondrogenic markers, chondrocytes were significantly higher to ADSCs and BMSCs for aggrecan, collagen IX, sry (sex determining region y)-box9, collagen II and fibromodullin; and only to ADSC for collagen XI. BMSC was higher to ADSC for aggrecan and collagen IX, p ≤ 0.0001. The combination of TGF-β3 + BMP-6 revealed increased gene expressions on both BMSCs and ADSCs for early and mature chondrogenic markers, but no significance difference. For dedifferentiation markers, ADSC was significantly higher to chondrocyte for collagen I. Glycosaminoglycan evaluations with both formulas revealed that chondrocytes were significantly higher to ADSCs and BMSCs, but none was significant to each other, p ≤ 0.0001. Combination of 10 ng TGF-β3 with 10 ng of BMP-6 enhanced chondrogenic potentials of BMSCs and ADSCs compare to TGF-β3 alone. This could be the ideal cocktail for either cell's chondrogenic induction.
    Matched MeSH terms: Bone Marrow Cells/metabolism
  6. Krishnamurithy G, Mohan S, Yahya NA, Mansor A, Murali MR, Raghavendran HRB, et al.
    PLoS One, 2019;14(3):e0214212.
    PMID: 30917166 DOI: 10.1371/journal.pone.0214212
    It has been demonstrated that nanocrystalline forsterite powder synthesised using urea as a fuel in sol-gel combustion method had produced a pure forsterite (FU) and possessed superior bioactive characteristics such as bone apatite formation and antibacterial properties. In the present study, 3D-scaffold was fabricated using nanocrystalline forsterite powder in polymer sponge method. The FU scaffold was used in investigating the physicochemical, biomechanics, cell attachment, in vitro biocompatibility and osteogenic differentiation properties. For physicochemical characterisation, Fourier-transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoemission spectrometer (XPS) and Brunauer-Emmett-Teller (BET) were used. FTIR, EDX, XRD peaks and Raman spectroscopy demonstrated correlating to FU. The XPS confirmed the surface chemistry associating to FU. The BET revealed FU scaffold surface area of 12.67 m2/g and total pore size of 0.03 cm3/g. Compressive strength of the FU scaffold was found to be 27.18 ± 13.4 MPa. The human bone marrow derived mesenchymal stromal cells (hBMSCs) characterisation prior to perform seeding on FU scaffold verified the stromal cell phenotypic and lineage commitments. SEM, confocal images and presto blue viability assay suggested good cell attachment and proliferation of hBMSCs on FU scaffold and comparable to a commercial bone substitutes (cBS). Osteogenic proteins and gene expression from day 7 onward indicated FU scaffold had a significant osteogenic potential (p<0.05), when compared with day 1 as well as between FU and cBS. These findings suggest that FU scaffold has a greater potential for use in orthopaedic and/or orthodontic applications.
    Matched MeSH terms: Bone Marrow Cells/metabolism*
  7. Rohaina CM, Then KY, Ng AM, Wan Abdul Halim WH, Zahidin AZ, Saim A, et al.
    Transl Res, 2014 Mar;163(3):200-10.
    PMID: 24286920 DOI: 10.1016/j.trsl.2013.11.004
    The cornea can be damaged by a variety of clinical disorders or chemical, mechanical, and thermal injuries. The objectives of this study were to induce bone marrow mesenchymal stem cells (BMSCs) to corneal lineage, to form a tissue engineered corneal substitute (TEC) using BMSCs, and to treat corneal surface defects in a limbal stem cell deficiency model. BMSCs were induced to corneal lineage using limbal medium for 10 days. Induced BMSCs demonstrated upregulation of corneal stem cell markers; β1-integrin, C/EBPδ, ABCG2, and p63, increased protein expression of CK3 and p63 significantly compared with the uninduced ones. For TEC formation, passage 1 BMSCs were trypsinized and seeded on amniotic membrane in a transwell co-culture system and were grown in limbal medium. Limbal stem cell deficiency models were induced by alkaline injury, and the TEC was implanted for 8 weeks. Serial slit lamp evaluation revealed remarkable improvement in corneal regeneration in terms of corneal clarity and reduced vascularization. Histologic and optical coherence tomography analyses demonstrated comparable corneal thickness and achieved stratified epithelium with a compact stromal layer resembling that of normal cornea. CK3 and p63 were expressed in the newly regenerated cornea. In conclusion, BMSCs can be induced into corneal epithelial lineage, and these cells are viable for the formation of TEC, to be used for the reconstruction of the corneal surface in the limbal stem cell deficient model.
    Matched MeSH terms: Bone Marrow Cells/metabolism
  8. Venugopal C, K S, Rai KS, Pinnelli VB, Kutty BM, Dhanushkodi A
    Curr Gene Ther, 2018;18(5):307-323.
    PMID: 30209999 DOI: 10.2174/1566523218666180913152615
    INTRODUCTION: Mesenchymal Stem Cell (MSC) therapy in recent years has gained significant attention. Though the functional outcomes following MSC therapy for neurodegenerative diseases are convincing, various mechanisms for the functional recovery are being debated. Nevertheless, recent studies convincingly demonstrated that recovery following MSC therapy could be reiterated with MSC secretome per se thereby shifting the dogma from cell therapy to cell "based" therapy. In addition to various functional proteins, stem cell secretome also includes extracellular membrane vesicles like exosomes. Exosomes which are of "Nano" size have attracted significant interest as they can pass through the bloodbrain barrier far easily than macro size cells or growth factors. Exosomes act as a cargo between cells to bring about significant alterations in target cells. As the importance of exosomes is getting unveil, it is imperial to carry out a comprehensive study to evaluate the neuroprotective potential of exosomes as compared to conventional co-culture or total condition medium treatments.

    OBJECTIVE: Thus, the present study is designed to compare the neuroprotective potential of MSC derived exosomes with MSC-condition medium or neuron-MSC-co-culture system against kainic acid induced excitotoxicity in in vitro condition. The study also aims at comparing the neuroprotective efficacy of exosomes/condition medium/co-culture of two MSC viz., neural crest derived human Dental Pulp Stem Cells (hDPSC) and human Bone-Marrow Mesenchymal Stem Cells (hBM-MSC) to identify the appropriate MSC source for treating neurodegenerative diseases.

    RESULT: Our results demonstrated that neuroprotective efficacy of MSC-exosomes is as efficient as MSC-condition medium or neuron-MSC co-culture system and treating degenerating hippocampal neurons with all three MSC based approaches could up-regulate host's endogenous growth factor expressions and prevent apoptosis by activating cell survival PI3K-B-cell lymphoma-2 (Bcl-2) pathway.

    CONCLUSION: Thus, the current study highlights the possibilities of treating neurodegenerative diseases with "Nano" size exosomes as opposed to transplanting billions of stem cells which inherit several disadvantages.

    Matched MeSH terms: Bone Marrow Cells/metabolism
  9. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
    Matched MeSH terms: Bone Marrow Cells/metabolism
  10. Choong PF, Mok PL, Cheong SK, Leong CF, Then KY
    Cytotherapy, 2007;9(2):170-83.
    PMID: 17453969
    The multipotency of stromal cells has been studied extensively. It has been reported that mesenchymal stromal cells (MSC) are capable of differentiating into cells of multilineage. Different methods and reagents have been used to induce the differentiation of MSC. We investigated the efficacy of different growth factors in inducing MSC differentiation into neurons.
    Matched MeSH terms: Bone Marrow Cells/metabolism
  11. Huat TJ, Khan AA, Abdullah JM, Idris FM, Jaafar H
    Int J Mol Sci, 2015;16(5):9693-718.
    PMID: 25938966 DOI: 10.3390/ijms16059693
    Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
    Matched MeSH terms: Bone Marrow Cells/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links