Displaying all 19 publications

Abstract:
Sort:
  1. Hama-Ali EO, Alwee SS, Tan SG, Panandam JM, Ling HC, Namasivayam P, et al.
    Mol Biol Rep, 2015 May;42(5):917-25.
    PMID: 25399079 DOI: 10.1007/s11033-014-3829-7
    Oil palm breeding has been progressing very well in Southeast Asia, especially in Malaysia and Indonesia. Despite this progress, there are still problems due to the difficulty of controlled crossing in oil palm. Contaminated/illegitimate progeny has appeared in some breeding programs; late and failure of detection by the traditional method causes a waste of time and labor. The use of molecular markers improves the integrity of breeding programs in perennial crops such as oil palm. Four half-sib families with a total of 200 progeny were used in this study. Thirty polymorphic single locus DNA microsatellites markers were typed to identify the illegitimate individuals and to obtain the correct parental and progeny assignments by using the CERVUS and COLONY programs. Three illegitimate palms (1.5%) were found, and 16 loci proved to be sufficient for sibship assignments without parental genotypes by using the COLONY program. The pairwise-likelihood score (PLS) method was better for half-sib family assignments than the full likelihood (FL) method.
    Matched MeSH terms: Plant Breeding/methods*
  2. Nijman V
    Zoo Biol, 2016 Jan-Feb;35(1):1-3.
    PMID: 26661798 DOI: 10.1002/zoo.21256
    Ogata and Seino [Zoo Biol, 2015, 34:76-79] sequenced the mitochondrial D-loop of five proboscis monkeys Nasalis larvatus from Yokahama Zoo, Japan, that were imported from Surabaya Zoo, Indonesia. They compared their sequences with those of 16 proboscis monkeys from Sabah, Malaysia, and on the basis of a haplotype network analysis of 256 base pairs concluded that the northern Malaysian and southern Indonesian populations of proboscis monkeys are genetically differentiated. I provide information on the origin of the Indonesian proboscis monkeys, showing that they were the first-generation offspring of wild-caught individuals from the Pulau Kaget Strict Nature Reserve in the province of South Kalimantan. Using a phylogenetic approach and adding additional sequences from Indonesia and Malaysia, I reanalyzed their data, and found no support for a north-south divide. Instead the resulting tree based on 433 base pairs sequences show two strongly supported clades, both containing individuals from Indonesia and Malaysia. Work on captive individuals, as reported by Ogata and Seino, can aid in developing appropriate markers and techniques, but to obtain a more complete understanding of the genetic diversity and differentiation of wild proboscis monkeys, more detailed geographic sampling from all over Borneo is needed.
    Matched MeSH terms: Breeding/methods*
  3. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, et al.
    Mol Biol Rep, 2013 Mar;40(3):2369-88.
    PMID: 23184051 DOI: 10.1007/s11033-012-2318-0
    Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.
    Matched MeSH terms: Breeding/methods
  4. Teh CK, Ong AL, Mayes S, Massawe F, Appleton DR
    Genes (Basel), 2020 07 21;11(7).
    PMID: 32708151 DOI: 10.3390/genes11070826
    Superior oil yield is always the top priority of the oil palm industry. Short trunk height (THT) and compactness traits have become increasingly important to improve harvesting efficiency since the industry started to suffer yield losses due to labor shortages. Breeding populations with low THT and short frond length (FL) are actually available, such as Dumpy AVROS pisifera (DAV) and Gunung Melayu dura (GM). However, multiple trait stacking still remains a challenge for oil palm breeding, which usually requires 12-20 years to complete a breeding cycle. In this study, yield and height increment in the GM × GM (GM-3341) and the GM × DAV (GM-DAV-3461) crossing programs were evaluated and palms with good yield and smaller height increment were identified. In the GM-3341 family, non-linear THT growth between THT_2008 (seven years old) and THT_2014 (13 years old) was revealed by a moderate correlation, suggesting that inter-palm competition becomes increasingly important. In total, 19 quantitative trait loci (QTLs) for THT_2008 (8), oil per palm (O/P) (7) and FL (4) were localized on the GM-3341 linkage map, with an average mapping interval of 2.01 cM. Three major QTLs for THT_2008, O/P and FL are co-located on chromosome 11 and reflect the correlation of THT_2008 with O/P and FL. Multiple trait selection for high O/P and low THT (based on the cumulative effects of positive alleles per trait) identified one palm from 100 palms, but with a large starting population of 1000-1500 seedling per cross, this low frequency could be easily compensated for during breeding selection.
    Matched MeSH terms: Plant Breeding/methods*
  5. Okomoda VT, Koh ICC, Shahreza MS
    Zygote, 2017 Aug;25(4):443-452.
    PMID: 28635581 DOI: 10.1017/S0967199417000259
    Breeding and larval performance of novel hybrids from reciprocal crosses of Asian catfish Pangasianodon hypophthalmus (Sauvage, 1878) and African catfish Clarias gariepinus (Burchell, 1822) were investigated in this study. Spawning was by hormonal injection of brood fish, artificial fertilization, and incubation in triplicate aquarium tanks (0.5 × 0.5 × 0.5 m3) with continuous aeration. Reciprocal crosses (♀C. gariepinus × ♂P. hypophthalmus and ♀P. hypophthalmus × ♂C. gariepinus) had lower hatchability (≤50%) than their pure siblings (≥75%). Fish from all crosses survived until the juvenile stage but survival at 35 days post hatching (dph) was higher for pure C. gariepinus sib. ♀C. gariepinus × ♂P. hypophthalmus was observed to be less resistant to degradation of water quality than the other crosses, however it had higher body weight compared with the other crosses that showed similar performance. Morphological comparison of surviving juvenile at 35 dph, showed that all ♀P. hypophthalmus × ♂C. gariepinus and 13% of the ♀C. gariepinus × ♂P. hypophthalmus exhibited the very same morphology as that of their maternal parent species, while the other portion of the ♀C. gariepinus × ♂P. hypophthalmus cross exhibited morphological traits that were intermediate between those of both parent species. This study been the first successful attempt to hybridize both species and therefore, laid the groundwork for further studies on the aquaculture potentials of the novel hybrids.
    Matched MeSH terms: Breeding/methods*
  6. Cheng A, Ismail I, Osman M, Hashim H, Mohd Zainual NS
    Genome, 2017 Dec;60(12):1045-1050.
    PMID: 28813631 DOI: 10.1139/gen-2017-0100
    While it is crucial for developing countries like Malaysia to achieve self-sufficiency in rice (Oryza sativa L.), it is equally critical to be able to produce high-quality rice, specifically fragrant rice, which demands are often met through importation. The present study was aimed at developing high-yielding fragrant rice, in a timely and cost-effective manner. A marker-assisted backcross (MABC) approach was optimised to introgress the fragrance gene (fgr) into two high-yielding Malaysian varieties, MR84 and MR219, within two years utilising less than 50 molecular markers. Coupled with phenotypic screening, one single foreground marker (fgr-SNP) and 48 background markers were selected and utilised, revealing recovery of at least 90% of recurrent parent genome (RPG) in merely two backcross generations. Collectively, the yield potential of the developed BC2F2 lines (BLs) was higher (P > 0.05) than the donor parent, MRQ74, and similar (P < 0.05) to both the recurrent parents, MR84 and MR219. In addition, some of the developed BLs showed good grain quality, such as having long grain. We believe that this is the first report comprising the validation and utilisation of the single functional marker system (fgr-SNP) in introgressing the fgr gene into different rice varieties.
    Matched MeSH terms: Plant Breeding/methods*
  7. Hamzah A, Thoa NP, Nguyen NH
    J Appl Genet, 2017 Nov;58(4):509-519.
    PMID: 28980200 DOI: 10.1007/s13353-017-0411-8
    Quantitative genetic analysis was performed on 10,919 data records collected over three generations from the selection programme for increased body weight at harvest in red tilapia (Oreochromis spp.). They were offspring of 224 sires and 226 dams (50 sires and 60 dams per generation, on average). Linear mixed models were used to analyse body traits (weight, length, width and depth), whereas threshold generalised models assuming probit distribution were employed to examine genetic inheritance of survival rate, sexual maturity and body colour. The estimates of heritability for traits studied (body weight, standard length, body width, body depth, body colour, early sexual maturation and survival) across statistical models were moderate to high (0.13-0.45). Genetic correlations among body traits and survival were high and positive (0.68-0.96). Body length and width exhibited negative genetic correlations with body colour (- 0.47 to - 0.25). Sexual maturity was genetically correlated positively with measurements of body traits (weight and length). Direct and correlated genetic responses to selection were measured as estimated breeding values in each generation and expressed in genetic standard deviation units (σG). The cumulative improvement achieved for harvest body weight was 1.72 σG after three generations or 12.5% per generation when the gain was expressed as a percentage of the base population. Selection for improved body weight also resulted in correlated increase in other body traits (length, width and depth) and survival rate (ranging from 0.25 to 0.81 genetic standard deviation units). Avoidance of black spot parent matings also improved the overall red colour of the selected population. It is concluded that the selective breeding programme for red tilapia has succeeded in achieving significant genetic improvement for a range of commercially important traits in this species, and the large genetic variation in body colour and survival also shows that there are prospects for future improvement of these traits in this population of red tilapia.
    Matched MeSH terms: Breeding/methods
  8. Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, et al.
    Biomed Res Int, 2013;2013:963525.
    PMID: 23484164 DOI: 10.1155/2013/963525
    Submergence or flood is one of the major harmful abiotic stresses in the low-lying countries and crop losses due to waterlogging are considerably high. Plant breeding techniques, conventional or genetic engineering, might be an effective and economic way of developing crops to grow successfully in waterlogged condition. Marker assisted selection (MAS) is a new and more effective approach which can identify genomic regions of crops under stress, which could not be done previously. The discovery of comprehensive molecular linkage maps enables us to do the pyramiding of desirable traits to improve in submergence tolerance through MAS. However, because of genetic and environmental interaction, too many genes encoding a trait, and using undesirable populations the mapping of QTL was hampered to ensure proper growth and yield under waterlogged conditions Steady advances in the field of genomics and proteomics over the years will be helpful to increase the breeding programs which will help to accomplish a significant progress in the field crop variety development and also improvement in near future. Waterlogging response of soybean and major cereal crops, as rice, wheat, barley, and maize and discovery of QTL related with tolerance of waterlogging, development of resistant variety, and, in addition, future prospects have also been discussed.
    Matched MeSH terms: Breeding/methods*
  9. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Kamal Uddin M, Alam MZ, et al.
    Mol Biol Rep, 2014 Nov;41(11):7395-411.
    PMID: 25085039 DOI: 10.1007/s11033-014-3628-1
    Common purslane (Portulaca oleracea), also known as pigweed, fatweed, pusle, and little hogweed, is an annual succulent herb in the family Portulacaceae that is found in most corners of the globe. From the ancient ages purslane has been treated as a major weed of vegetables as well as other crops. However, worldwide researchers and nutritionists have studied this plant as a potential vegetable crop for humans as well as animals. Purslane is a nutritious vegetable with high antioxidant properties and recently has been recognized as the richest source of α-linolenic acid, essential omega-3 and 6 fatty acids, ascorbic acid, glutathione, α-tocopherol and β-carotene. The lack of vegetable sources of ω-3 fatty acids has resulted in a growing level of attention to introduce purslane as a new cultivated vegetable. In the rapid-revolutionizing worldwide atmosphere, the ability to produce improved planting material appropriate to diverse and varying rising conditions is a supreme precedence. Though various published reports on morphological, physiological, nutritional and medicinal aspects of purslane are available, research on the genetic improvement of this promising vegetable crop are scant. Now it is necessary to conduct research for the genetic improvement of this plant. Genetic improvement of purslane is also a real scientific challenge. Scientific modernization of conventional breeding with the advent of advance biotechnological and molecular approaches such as tissue culture, protoplast fusion, genetic transformation, somatic hybridization, marker-assisted selection, qualitative trait locus mapping, genomics, informatics and various statistical representation have opened up new opportunities of revising the relationship between genetic diversity, agronomic performance and response to breeding for varietal improvement. This review is an attempt to amalgamate the assorted scientific information on purslane propagation, cultivation, varietal improvement, nutrient analyses, medicinal uses and to describe prospective research especially for genetic improvement of this crop.
    Matched MeSH terms: Breeding/methods*
  10. Malek MA, Rafii MY, Shahida Sharmin Afroz M, Nath UK, Mondal MM
    ScientificWorldJournal, 2014;2014:968796.
    PMID: 25197722 DOI: 10.1155/2014/968796
    Genetic diversity is important for crop improvement. An experiment was conducted during 2011 to study genetic variability, character association, and genetic diversity among 27 soybean mutants and four mother genotypes. Analysis of variance revealed significant differences among the mutants and mothers for nine morphological traits. Eighteen mutants performed superiorly to their mothers in respect to seed yield and some morphological traits including yield attributes. Narrow differences between phenotypic and genotypic coefficients of variation (PCV and GCV) for most of the characters revealed less environmental influence on their expression. High values of heritability and genetic advance with high GCV for branch number, plant height, pod number, and seed weight can be considered as favorable attributes for soybean improvement through phenotypic selection and high expected genetic gain can be achieved. Pod and seed number and maturity period appeared to be the first order traits for higher yield and priority should be given in selection due to their strong associations and high magnitudes of direct effects on yield. Cluster analysis grouped 31 genotypes into five groups at the coefficient value of 235. The mutants/genotypes from cluster I and cluster II could be used for hybridization program with the mutants of clusters IV and V in order to develop high yielding mutant-derived soybean varieties for further improvement.
    Matched MeSH terms: Breeding/methods
  11. Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD, et al.
    PLoS One, 2014;9(1):e85106.
    PMID: 24454799 DOI: 10.1371/journal.pone.0085106
    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a 'one size fits all' crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.
    Matched MeSH terms: Breeding/methods*
  12. Chang MS, Ho BC, Chan KL
    PMID: 1683011
    Successful colonization of Mansonia dives, the principal vector of subperiodic Brugia malayi was established in a field insectary. Mean egg clusters laid on Eichhornia crassipes, Pistia stratiotes, Homalomena cordata and polystyrofoam strips were 12.0, 10.4, 9.5 and 13.7 respectively. However, the mean number of first instar larvae hatched from each egg cluster laid by females on the three plant substrates (range 51.1 to 58.6) was higher than that laid on the polystyrofoam strips (41.8). There were no significant differences in the success pupation and adult emergence rates among the three host plants used as attachment substrates. Adult emergence occurred at a mean of 10.8 days. The first adult emergence was observed at the 25th day after hatching and continued till the 50th day. The 50% mortality rates for the adults were estimated as 8 days for the males and 14 days for the females. The mean gonotrophic cycle ranged from 3.8 to 4.3 days with a mean of 4.04 days. 63.6% of Ma. dives females oviposited in a medium of rat dung and water. The mean incubation period of eggs ranged from 5.2 to 6.5 days with a mean of 5.7 days. The biology of Ma. dives and Ma. bonneae is briefly compared.
    Matched MeSH terms: Breeding/methods*
  13. Ab Halim AAB, Rafii MY, Osman MB, Oladosu Y, Chukwu SC
    Biomed Res Int, 2021;2021:8350136.
    PMID: 34095311 DOI: 10.1155/2021/8350136
    High kernel elongation (HKE) is one of the high-quality characteristics in rice. The objectives of this study were to determine the effects of ageing treatments, gene actions, and inheritance pattern of kernel elongation on cooking quality in two populations of rice and determine the path of influence and contribution of other traits to kernel elongation in rice. Two rice populations derived from crosses between MR219 × Mahsuri Mutan and MR219 × Basmati 370 were used. The breeding materials included two F1 progenies from the two populations, and their respective parents were grown in four different batches at a week interval to synchronize the flowering between the female and male plants. Scaling tests and generation means analysis were carried out to determine ageing effects and estimate additive-dominance gene action and epistasis. The estimation of gene interaction was based on quantitative traits. Path coefficient analysis was done using SAS software version 9.4 to determine the path of influence (direct or indirect) of six quantitative traits on HKE. Results obtained showed that nonallelic gene interaction was observed in all traits. The results before ageing and after ageing showed significant differences in all traits, while the gene interaction changed after ageing. The HKE value improved after ageing, suggesting that ageing is an external factor that could influence gene expression. The epistasis effect for HKE obtained from the cross Mahsuri Mutan × MR219 showed duplicate epistasis while that obtained from a cross between Basmati 370 × MR219 showed complimentary epistasis. Besides, the heritability of HKE was higher in Basmati 370 × MR219 compared to that obtained in Mahsuri Mutan × MR219. The path analysis showed that the cooked grain length and length-width ratio positively significantly affected HKE. It was concluded that ageing treatment is an external factor that could improve the expression of HKE. The findings from this study would be useful to breeders in the selection and development of new specialty (HKE) rice varieties.
    Matched MeSH terms: Plant Breeding/methods
  14. Kwong QB, Teh CK, Ong AL, Chew FT, Mayes S, Kulaveerasingam H, et al.
    BMC Genet, 2017 Dec 11;18(1):107.
    PMID: 29228905 DOI: 10.1186/s12863-017-0576-5
    BACKGROUND: Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits.

    RESULTS: The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods.

    CONCLUSION: Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation.

    Matched MeSH terms: Plant Breeding/methods*
  15. Hamilton MG, Mekkawy W, Benzie JAH
    Genet. Sel. Evol., 2019 Apr 29;51(1):17.
    PMID: 31035934 DOI: 10.1186/s12711-019-0454-x
    Catla catla (Hamilton) fertilised spawn was collected from the Halda, Jamuna and Padma rivers in Bangladesh from which approximately 900 individuals were retained as 'candidate founders' of a breeding population. These fish were fin-clipped and genotyped using the DArTseq platform to obtain, 3048 single nucleotide polymorphisms (SNPs) and 4726 silicoDArT markers. Using SNP data, individuals that shared no putative parents were identified using the program COLONY, i.e. 140, 47 and 23 from the Halda, Jamuna and Padma rivers, respectively. Allele frequencies from these individuals were considered as representative of those of the river populations, and genomic relationship matrices were generated. Then, half-sibling and full-sibling relationships between individuals were assigned manually based on the genomic relationship matrices. Many putative half-sibling and full-sibling relationships were found between individuals from the Halda and Jamuna rivers, which suggests that catla sampled from rivers as spawn are not necessarily representative of river populations. This has implications for the interpretation of past population genetics studies, the sampling strategies to be adopted in future studies and the management of broodstock sourced as river spawn in commercial hatcheries. Using data from individuals that shared no putative parents, overall multi-locus pairwise estimates of Wright's fixation index (FST) were low (≤ 0.013) and the optimum number of clusters using unsupervised K-means clustering was equal to 1, which indicates little genetic divergence among the SNPs included in our study within and among river populations.
    Matched MeSH terms: Breeding/methods
  16. Khan MMH, Rafii MY, Ramlee SI, Jusoh M, Al Mamun M
    Sci Rep, 2021 Apr 07;11(1):7597.
    PMID: 33828137 DOI: 10.1038/s41598-021-87039-8
    As a crop for the new millennium Bambara groundnut (Vigna subterranea [L.] Verdc.) considered as leading legumes in the tropical regions due to its versatile advantages. The main intent of this study was to find out the high yielding potential genotypes and considering these genotypes to develop pure lines for commercial cultivation in Malaysia. Considering the 14 qualitative and 27 quantitative traits of fifteen landraces the variation and genetic parameters namely, variability, heritability, genetic advance, characters association, and cluster matrix were determined. ANOVA revealed significant variation for all the agronomic traits (except plant height). Among the accessions, highly significant differences (P ≤ 0.01) were found for almost all the traits excluding fifty percent flowering date, seed length, seed width. The 16 traits out of the 27 quantitative traits had a coefficient of variation (CV) ≥ 20%. A positive and intermediate to perfect highly significant association (r = 0.23 to 1.00; P 
    Matched MeSH terms: Plant Breeding/methods*
  17. Nejat N, Valdiani A, Cahill D, Tan YH, Maziah M, Abiri R
    ScientificWorldJournal, 2015;2015:982412.
    PMID: 25667940 DOI: 10.1155/2015/982412
    Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spiroplasmas, and serves as a model for their study. Botanical information with respect to synonyms, vernacular names, cultivars, floral morphology, and reproduction adds to understanding of the plant while the geography and ecology of periwinkle illustrate the organism's ubiquity. Good agronomic practices ensure generous propagation of healthy plants that serve as a source of bioactive compounds and multitudinous horticultural applications. The correlation between genetic diversity, variants, and TIA production exists. MP is afflicted with a whole range of diseases that have to be properly managed. The ethnobotanical significance of MP is exemplified by its international usage as a traditional remedy for abundant ailments and not only for cancer. TIAs are present only in micro quantities in the plant and are highly poisonous per se rendering a challenge for researchers to increase yield and reduce toxicity.
    Matched MeSH terms: Breeding/methods
  18. Phua AC, Abdullah RB, Mohamed Z
    J. Reprod. Dev., 2003 Aug;49(4):307-11.
    PMID: 14967923
    Sex determination of livestock is performed to achieve the objectives of livestock breeding programmes. Techniques for sex determination have evolved from karyotyping to detecting Y-specific antigens and recently to the polymerase chain reaction (PCR), which appears to be the most sensitive, accurate, rapid and reliable method to date. In this study, a PCR-based sex determination method for potential application in goat breeding programmes was developed. Primers were designed to amplify a portion of the X amelogenin gene (Aml-X) on the X chromosome to give a 300 bp product and Sry gene on the Y chromosome to give a 116 bp product. PCR optimization was performed using DNA template extracted from a whole blood sample of Jermasia goats (German Fawn x Katjang) of both sexes. It was possible to identify the sex chromosomes by amplifying both male- and female-specific genes simultaneously in a duplex reaction with males yielding two bands and females yielding one band. The Aml-X primer set, which served as an internal control primer, did not interfere with amplification of the Y-specific sequence even when a low amount of DNA (1 ng) was used. The duplex reaction subjected to a blind test showed 100% (14/14) concordance, proving its accuracy and reliability. The primer sets used were found to be highly specific and were suitable for gender selection of goats.
    Matched MeSH terms: Breeding/methods
  19. Teh HF, Neoh BK, Hong MP, Low JY, Ng TL, Ithnin N, et al.
    PLoS One, 2013;8(4):e61344.
    PMID: 23593468 DOI: 10.1371/journal.pone.0061344
    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
    Matched MeSH terms: Breeding/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links