Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet-visible (UV-Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products.
The amino acid compositions of bovine, porcine and fish gelatin were determined by amino acid analysis using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as derivatization reagent. Sixteen amino acids were identified with similar spectral chromatograms. Data pre-treatment via centering and transformation of data by normalization were performed to provide data that are more suitable for analysis and easier to be interpreted. Principal component analysis (PCA) transformed the original data matrix into a number of principal components (PCs). Three principal components (PCs) described 96.5% of the total variance, and 2 PCs (91%) explained the highest variances. The PCA model demonstrated the relationships among amino acids in the correlation loadings plot to the group of gelatins in the scores plot. Fish gelatin was correlated to threonine, serine and methionine on the positive side of PC1; bovine gelatin was correlated to the non-polar side chains amino acids that were proline, hydroxyproline, leucine, isoleucine and valine on the negative side of PC1 and porcine gelatin was correlated to the polar side chains amino acids that were aspartate, glutamic acid, lysine and tyrosine on the negative side of PC2. Verification on the database using 12 samples from commercial products gelatin-based had confirmed the grouping patterns and the variables correlations. Therefore, this quantitative method is very useful as a screening method to determine gelatin from various sources.
In-house method validation was conducted to determine amino acid composition in gelatin by a pre-column derivatization procedure with the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent. The analytical parameters revealed that the validated method was capable of selectively performing a good chromatographic separation for 18 amino acids in less than 40 min; the overall detection and quantitation limit for amino acids fell into ranges of 5.68-12.48 and 36.0-39.0 pmol/μl, respectively; the matrix effect was not observed, and the linearity range was 37.5-1000 pmol/μl. The accuracy (precision and recovery) analyses of the method were conducted under repeatable conditions on different days in random order. Method precision revealed by HorRat values was significantly less than 2, except for histidine with a precision of 2.19, and the method recoveries had a range of 80-115% except for alanine which was recovered at 79.4%. The findings were reproducible and accurately defined, and the method was found to be suited to routine analysis of amino acid composition in gelatin-based ingredients.
In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86 mg/kg, while phenthoate was detected at 0.311 mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40-48%, 35-43%, and 30-45%, respectively, when a radiation strength of 0.5 kGy was utilized. However, when the radiation dose was increased to 1.0 kGy, the levels of the pesticides were reduced to 85-90%, 80-91%, and 90-95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0 kGy can remove 80-95% of some pesticides.
Efficacy of eight recently developed and used anthelmintics of the benzimidazole carbamates; mebendazole, flubendazole, oxfendazole, albendazole, oxibendazole, 790163 proflubendazole, 780118 "cyanide" benzimidazole and 780120 "selenium" benzimidazole was tested orally against the enteral immature larval and adult stages of Trichinella spiralis in mice. Six of these derivatives of methyl benzimidazole-2-carbamates have an aryl and two have an alkyl substituent at the 5'-position of the parent benzimidazole ring. The nature of these substituents was found to be related to the antitrichinellous activity of the compounds. Compounds with the 5'-substituent linked to the parent benzimidazole ring by either a carbon, sulfur or an oxygen atom are more potent than those bridged by selenium or by the carbon with an attached-CN group. The result clearly indicates that the benzimidazoles are invariably more potent against immature enteral phase than the adult worms. This finding would be of importance in a targeted synthesis of new, effective derivatives of benzimidazole, e.g., in the screening for more important tissue-dwelling nematodes like filarial worms.
Rivastigmine, a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), has been approved by U.S. Food and Drug Administration to treat Alzheimer's disease (AD) and Parkinson's disease (PD) dementia. In the current work, a bambuterol derivative lacking one of the carbamoyloxy groups on the benzene ring (BMC-1) and its analogues were synthesized using 1-(3-hydroxyphenyl) ethan-1-one and 1-(4-hydroxyphenyl) ethan-1-one as starting materials. In-vitro cholinesterase assay established that nine compounds were more potent to inhibit both electric eel AChE and equine serum BChE than rivastigmine under the same experimental conditions. Further study confirmed that among the nine carbamates, BMC-3 (IC50(AChE) = 792 nM, IC50(BChE) = 2.2 nM) and BMC-16 (IC50(AChE) = 266 nM, IC50(BChE) = 10.6 nM) were excellent cholinesterase inhibitors with potential of permeating through the blood-brain barrier. These carbamates could be used as potential dual inhibitors of AChE and BChE and to discover novel drugs for the treatment of AD and PD dementia.
A detailed procedure for estimating uncertainty according to the Laboratory of Government Chemists/Valid Analytical Measurement (LGC/VAM) protocol for determination of 18 amino acids in gelatin is proposed. The expanded uncertainty was estimated using mainly the method validation data (precision and trueness). Other sources of uncertainties were contributed by components in standard preparation measurements. The method scope covered a single matrix (gelatin) under a wide range of analyte concentrations. The uncertainty of method precision, μ(P) was 0.0237-0.1128pmolμl(-1) in which hydroxyproline and histidine represented the lowest and highest values of uncertainties, respectively. Proline and phenylalanine represented the lowest and highest uncertainties value for method recovery, μ(R) that was estimated within 0.0064-0.0995pmolμl(-1). The uncertainties from other sources, μ(Std) were 0.0325, 0.0428 and 0.0413pmolμl(-1) that were contributed by hydroxyproline, other amino acids and cystine, respectively. Hydroxyproline and phenylalanine represented the lowest and highest values of expanded uncertainty, U(y) that were determined at 0.0949 and 0.2473pmolμl(-1), respectively. The data were accurately defined and fulfill the technical requirements of ISO 17025:2005.
In this study, the development and validation of a high-performance liquid chromatography (HPLC) assay for determination of repaglinide concentration in human plasma for pharmacokinetic studies is described. Plasma samples containing repaglinide and an internal standard, indomethacin were extracted with ethylacetate at pH 7.4. The recovery of repaglinide was 92%+/-55.31. Chromatographic separations were performed on Purospher STAR C-18 analytical column (4.8 mm x 150 mm; 5 microm particle size). The mobile phase composed of acetonitrile-ammonium formate (pH 2.7; 0.01 M) (60:40, v/v). The flow rate was 1 ml/min. The retention time for repaglinide and indomethacin were approximately 6.2 and 5.3 min, respectively. Calibration curves of repaglinide were linear in the concentration range of 20-200 ng/ml in plasma. The limits of detection and quantification were 10 ng/ml and 20 ng/ml, respectively. The inter-day precision was from 5.21 to 11.84% and the intra-day precision ranged from 3.90 to 6.67%. The inter-day accuracy ranged 89.95 to 105.75% and intra-day accuracy ranged from 92.37 to 104.66%. This method was applied to determine repaglinide concentration in human plasma samples for a pharmacokinetic study.
Acanthamoeba castellanii belonging to the T4 genotype may cause a fatal brain infection known as granulomatous amoebic encephalitis, and the vision-threatening eye infection Acanthamoeba keratitis. The aim of this study was to evaluate the antiamoebic effects of three clinically available antidiabetic drugs, Glimepiride, Vildagliptin and Repaglinide, against A. castellanii belonging to the T4 genotype. Furthermore, we attempted to conjugate these drugs with silver nanoparticles (AgNPs) to enhance their antiamoebic effects. Amoebicidal, encystation, excystation, and host cell cytotoxicity assays were performed to unravel any antiacanthamoebic effects. Vildagliptin conjugated silver nanoparticles (Vgt-AgNPs) characterized by spectroscopic techniques and atomic force microscopy were synthesized. All three drugs showed antiamoebic effects against A. castellanii and significantly blocked the encystation. These drugs also showed significant cysticidal effects and reduced host cell cytotoxicity caused by A. castellanii. Moreover, Vildagliptin-coated silver nanoparticles were successfully synthesized and are shown to enhance its antiacanthamoebic potency at significantly reduced concentration. The repurposed application of the tested antidiabetic drugs and their nanoparticles against free-living amoeba such as Acanthamoeba castellanii described here is a novel outcome that holds tremendous potential for future applications against devastating infection.
Metastases account for more than 90% of all cancer deaths and respond poorly to most therapies. There remains an urgent need for new therapeutic modalities for the treatment of advanced metastatic cancers. The benzimidazole methylcarbamate drugs, commonly used as anti-helmitics, have been suggested to have anticancer activity, but progress has been stalled by their poor water solubility and poor suitability for systemic delivery to disseminated cancers. We synthesized and characterized the anticancer activity of novel benzimidazoles containing an oxetane or an amine group to enhance solubility. Among them, the novel oxetanyl substituted compound 18 demonstrated significant cytotoxicity toward a variety of cancer cell types including prostate, lung, and ovarian cancers with strong activity toward highly aggressive cancer lines (IC50: 0.9-3.8 μM). Compound 18 achieved aqueous solubility of 361 μM. In a mouse xenograft model of a highly metastatic human prostate cancer, compound 18 (30 mg/kg) significantly inhibited the growth of established tumors (T/C: 0.36) without noticeable toxicity.