STUDY DESIGN: A systematic search was performed using the MEDLINE, EMBASE, PsycINFO, CINAHL, and Web of Science databases to identify English-language articles published through June 2018. Articles were included if they were longitudinal studies in community-based populations, the primary exposure occurred during childhood, and the primary outcome was either a measure of subclinical CVD or a clinical CVD event occurring in adulthood. Two independent reviewers screened determined whether eligibility criteria were met.
RESULTS: There were 210 articles that met the predefined criteria. The greatest number of publications examined associations of clinical risk factors, including childhood adiposity, blood pressure, and cholesterol, with the development of adult CVD. Few studies examined childhood lifestyle factors including diet quality, physical activity, and tobacco exposure. Domains of risk beyond "traditional" cardiovascular risk factors, such as childhood psychosocial adversity, seemed to have strong published associations with the development of CVD.
CONCLUSIONS: Although the evidence was fairly consistent in direction and magnitude for exposures such as childhood adiposity, hypertension, and hyperlipidemia, significant gaps remain in the understanding of how childhood health and behaviors translate to the risk of adulthood CVD, particularly in lesser studied exposures like glycemic indicators, physical activity, diet quality, very early life course exposure, and population subgroups.
METHODS: Cross-sectional study was conducted in Kuantan, Pahang. The purposive sampling method was chosen. 76 obese women aged 18 years old and above were included in the study. Data were collected by using the set of the self-reported questionnaire consisted of socio-demographic and the walking time for the past 7 days. The sample blood test was taken to check for hs-CRP level.
RESULTS: Walking time spent in minutes was found to be significantly inverse associated with the hs-CRP level (p=0.040) among obese women.
CONCLUSION: The increase in walking time spent can help reduce the hs-CRP level, therefore reduce the risk for CVD.
METHODS: Literature databases were searched to June 2019. Observational studies were eligible if they measured short-term BPV, defined as variability in blood pressure measurements acquired either over a 24-hour period or several days. Data were extracted on method of BPV and reported association (or not) on future cardiovascular events, cardiovascular mortality and all-cause mortality. Methodological quality was assessed using the CASP observational study tool and data narratively synthesised.
RESULTS: Sixty-one studies including 3,333,801 individuals were eligible. BPV has been assessed by various methods including ambulatory and home-based BP monitors assessing 24-hour, "day-by-day" and "week-to-week" variability. There was moderate quality evidence of an association between BPV and cardiovascular events (43 studies analysed) or all-cause mortality (26 studies analysed) irrespective of the measurement method in the short- to longer-term. There was moderate quality evidence reporting inconsistent findings on the potential association between cardiovascular mortality, irrespective of methods of BPV assessment (17 studies analysed).
CONCLUSION: An association between BPV, cardiovascular mortality and cardiovascular events and/or all-cause mortality were reported by the majority of studies irrespective of method of measurement. Direct comparisons between studies and reporting of pooled effect sizes were not possible.
Methods: Analyses were performed on 243 women (mean body mass index 31.27 ± 4.14 kg/m2) who completed a 12-month lifestyle intervention in low socioeconomic communities in Klang Valley, Malaysia. Analysis of covariance (ANCOVA) was used to compare changes of cardiometabolic risk factors across weight change categories (2% gain, ±2% maintain, >2 to <5% loss, and 5 to 20% loss) within intervention and control group.
Results: A graded association for changes in waist circumference, fasting insulin, and total cholesterol (p=0.002, for all variables) across the weight change categories were observed within the intervention group at six months postintervention. Participants who lost 5 to 20% of weight had the greatest improvements in those risk markers (-5.67 cm CI: -7.98 to -3.36, -4.27 μU/mL CI: -7.35, -1.19, and -0.59 mmol/L CI: -.99, -0.19, respectively) compared to those who did not. Those who lost >2% to <5% weight reduced more waist circumference (-4.24 cm CI: -5.44 to -3.04) and fasting insulin (-0.36 μU/mL CI: -1.95 to 1.24) than those who maintained or gained weight. No significant association was detected in changes of risk markers across the weight change categories within the control group except for waist circumference and adiponectin.
Conclusion: Weight loss of >2 to <5% obtained through lifestyle intervention may represent a reasonable initial weight loss target for women in the low socioeconomic community as it led to improvements in selected risk markers, particularly of diabetes risk.
METHODS: This analysis includes 137,851 participants between the ages of 35 and 70 years living on five continents, with a median follow-up of 9.5 years. We used country-specific food-frequency questionnaires to determine dietary intake and estimated the glycemic index and glycemic load on the basis of the consumption of seven categories of carbohydrate foods. We calculated hazard ratios using multivariable Cox frailty models. The primary outcome was a composite of a major cardiovascular event (cardiovascular death, nonfatal myocardial infarction, stroke, and heart failure) or death from any cause.
RESULTS: In the study population, 8780 deaths and 8252 major cardiovascular events occurred during the follow-up period. After performing extensive adjustments comparing the lowest and highest glycemic-index quintiles, we found that a diet with a high glycemic index was associated with an increased risk of a major cardiovascular event or death, both among participants with preexisting cardiovascular disease (hazard ratio, 1.51; 95% confidence interval [CI], 1.25 to 1.82) and among those without such disease (hazard ratio, 1.21; 95% CI, 1.11 to 1.34). Among the components of the primary outcome, a high glycemic index was also associated with an increased risk of death from cardiovascular causes. The results with respect to glycemic load were similar to the findings regarding the glycemic index among the participants with cardiovascular disease at baseline, but the association was not significant among those without preexisting cardiovascular disease.
CONCLUSIONS: In this study, a diet with a high glycemic index was associated with an increased risk of cardiovascular disease and death. (Funded by the Population Health Research Institute and others.).