Displaying all 9 publications

Abstract:
Sort:
  1. Ahmad AA, Wahab NA, Yeo CW, Oh SJWY, Chen HC
    J Vet Med Sci, 2019 Jan 08;81(1):48-52.
    PMID: 30429427 DOI: 10.1292/jvms.18-0297
    Forty rescued common palm civets were anesthetized. Twenty animals received intramuscular injections of alfaxalone 5 mg/kg and medetomidine 0.05 mg/kg (A-M group), whereas twenty animals received 5 mg/kg of tiletamine and zolazepam (T-Z group). The A-M group was reversed with atipamazole 0.25 mg/kg. There were no significant differences in the time from anesthetic injection to induction and intubation between the A-M and T-Z groups. The time from the injection of reversal in the A-M group and the time from cessation of isoflurane in the T-Z group to extubation, first response to recovery and ambulation were longer (P<0.05) in the T-Z group. The T-Z group recorded lower (P<0.05) rectal temperatures compared to the A-M group. This study showed that both drug combinations can be used effectively for the immobilization of civets. The A-M combination provided better anesthetic depth, but with higher incidence of bradycardia and hypoxemia. The recovery time was reduced significantly as atipamezole was used as a reversal agent in the A-M combination.
    Matched MeSH terms: Cardiovascular System/drug effects
  2. Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, et al.
    Molecules, 2021 Dec 30;27(1).
    PMID: 35011441 DOI: 10.3390/molecules27010209
    Coriandrum sativum (C. sativum), belonging to the Apiaceae (Umbelliferae) family, is widely recognized for its uses in culinary and traditional medicine. C. sativum contains various phytochemicals such as polyphenols, vitamins, and many phytosterols, which account for its properties including anticancer, anti-inflammatory, antidiabetic, and analgesic effects. The cardiovascular benefits of C. sativum have not been summarized before, hence this review aims to further evaluate and discuss its effectiveness in cardiovascular diseases, according to the recent literature. An electronic search for literature was carried out using the following databases: PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews. Articles were gathered from the inception of the database until August 2021. Moreover, the traditional uses and phytochemistry of coriander were surveyed in the original resources and summarized. As a result, most of the studies that cover cardiovascular benefits and fulfilled the eligibility criteria were in vivo, while only a few were in vitro and clinical studies. In conclusion, C. sativum can be deemed a functional food due to its wide range of cardiovascular benefits such as antihypertensive, anti-atherogenic, antiarrhythmic, hypolipidemic as well as cardioprotective effects.
    Matched MeSH terms: Cardiovascular System/drug effects*
  3. Ong Lai Teik D, Lee XS, Lim CJ, Low CM, Muslima M, Aquili L
    PLoS One, 2016;11(3):e0150447.
    PMID: 26938637 DOI: 10.1371/journal.pone.0150447
    BACKGROUND: There is some evidence to suggest that ginseng and Ginkgo biloba can improve cognitive performance, however, very little is known about the mechanisms associated with such improvement. Here, we tested whether cardiovascular reactivity to a task is associated with cognitive improvement.

    METHODOLOGY/PRINCIPAL FINDINGS: Using a double-blind, placebo controlled, crossover design, participants (N = 24) received two doses of Panax Ginseng (500, 1000 mg) or Ginkgo Biloba (120, 240 mg) (N = 24), and underwent a series of cognitive tests while systolic, diastolic, and heart rate readings were taken. Ginkgo Biloba improved aspects of executive functioning (Stroop and Berg tasks) in females but not in males. Ginseng had no effect on cognition. Ginkgo biloba in females reversed the initial (i.e. placebo) increase in cardiovascular reactivity (systolic and diastolic readings increased compared to baseline) to cognitive tasks. This effect (reversal) was most notable after those tasks (Stroop and Iowa) that elicited the greatest cardiovascular reactivity during placebo. In males, although ginkgo also decreased cardiovascular readings, it did so from an initial (placebo) blunted response (i.e. decrease or no change from baseline) to cognitive tasks. Ginseng, on the contrary, increased cardiovascular readings compared to placebo.

    CONCLUSIONS/SIGNIFICANCE: These results suggest that cardiovascular reactivity may be a mechanism by which ginkgo but not ginseng, in females is associated with certain forms of cognitive improvement.

    TRIAL REGISTRATION: ClinicalTrials.gov NCT02386852.

    Matched MeSH terms: Cardiovascular System/drug effects*
  4. Ali SS, Ahmad WANW, Budin SB, Zainalabidin S
    Rev Cardiovasc Med, 2020 Jun 30;21(2):225-240.
    PMID: 32706211 DOI: 10.31083/j.rcm.2020.02.49
    In spite of medical advances, cardiovascular disease remains a significant concern, imposing a great burden upon the economy and public health of nations by causing the highest morbidity and mortality cases globally. Moreover, it is well established that inflammation is closely linked to the pathogenesis of cardiovascular diseases. Hence, targeting inflammation seems to be a promising strategy in reducing cardiovascular risks. Currently, the importance of natural products in modern medicine is well recognised and continues to be of interest to the pharmaceutical industry. Phenolic acids are a class of phytochemical compounds that are well-known for their health benefits. They consists of various phytochemical constituents and have been widely studied in various disease models. Research involving both animals and humans has proven that phenolic acids possess cardioprotective properties such as anti-hypertensive, anti-hyperlipidemia, anti-fibrotic and anti-hypertrophy activity. Furthermore, numerous studies have proven that phenolic acids in phytochemical constituents such as gallic acid, caffeic acid and chlorogenic acid are promising anti-inflammatory agents. Hence, in this review, we outline and review recent evidence on the role of phenolic acids and their anti-inflammatory significance in studies published during the last 5 years. We also discuss their possible mechanisms of action in modulating inflammation related to cardiovascular disease.
    Matched MeSH terms: Cardiovascular System/drug effects*
  5. Fung SY, Tan NH, Sim SM, Marinello E, Guerranti R, Aguiyi JC
    Indian J Exp Biol, 2011 Apr;49(4):254-9.
    PMID: 21614888
    Mucuna pruriens has been used by native Nigerians as a prophylactic for snakebite. The protective effects of M. pruriens seed extract (MPE) were investigated against the pharmacological actions of N. sputatrix (Javan spitting cobra) venom in rats. The results showed that MPE-pretreatment protected against cardiorespiratory and, to a lesser extent, neuromuscular depressant effects of N. sputatrix venom. These may be explained at least in part by the neutralisation of the cobra venom toxins by anti-MPE antibodies elicited by the MPE pretreatment.
    Matched MeSH terms: Cardiovascular System/drug effects
  6. Balakumar P, Dhanaraj SA
    Cell Signal, 2013 Sep;25(9):1799-803.
    PMID: 23707531 DOI: 10.1016/j.cellsig.2013.05.009
    Dipeptidyl peptidase 4 (DPP-4) is a serine protease enzyme expressed widely in many tissues, including the cardiovascular system. The incretin hormones such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from the small intestine into the vasculature during a meal, and these incretins have a potential to release insulin from pancreatic beta cells of islets of Langerhans, affording a glucose-lowering action. However, both incretins are hurriedly degraded by the DPP-4. Inhibitors of DPP-4, therefore, enhance the bioavailability of GLP-1 and GIP, and thus have been approved for better glycemic management in patients afflicted with type 2 diabetes mellitus (T2DM). Five different DPP-4 inhibitors, often called as 'gliptins', namely sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin have been approved hitherto for clinical use. These drugs are used along with diet and exercise to lower blood sugar in diabetic subjects. T2DM is intricately related with an increased risk of cardiovascular disease. Growing body of evidence suggests that gliptins, in addition to their persuasive anti-diabetic action, have a beneficial pleiotropic action on the heart and vessels. In view of the fact of cardiovascular disease susceptibility of patients afflicted with T2DM, gliptins might offer additional therapeutic benefits in treating diabetic cardiovascular complications. Exploring further the cardiovascular pleiotropic potentials of gliptins might open a panorama in impeccably employing these agents for the dual management of T2DM and T2DM-associated perilous cardiovascular complications. This review will shed lights on the newly identified beneficial pleiotropic actions of gliptins on the cardiovascular system.
    Matched MeSH terms: Cardiovascular System/drug effects
  7. Fung SY, Tan NH, Sim SM
    Trop Biomed, 2010 Dec;27(3):366-72.
    PMID: 21399576 MyJurnal
    The protective effects of Mucuna pruriens seed extract (MPE) against the cardio-respiratory depressant and neuromuscular paralytic effects induced by injection of Calloselasma rhodostoma (Malayan pit viper) venom in anaesthetized rats were investigated. While MPE pretreatment did not reverse the inhibitory effect of the venom on the gastrocnemius muscle excitability, it significantly attenuated the venom-induced cardio-respiratory depressant effects (p < 0.05). The protection effects may have an immunological mechanism, as indicated by the presence of several proteins in the venom that are immunoreactive against anti-MPE. However, we cannot rule out the possibility that the pretreatment may exert a direct, non-immunological protective action against the venom.
    Matched MeSH terms: Cardiovascular System/drug effects
  8. Cheah HY, Kiew LV, Lee HB, Japundžić-Žigon N, Vicent MJ, Hoe SZ, et al.
    J Appl Toxicol, 2017 Nov;37(11):1268-1285.
    PMID: 28165137 DOI: 10.1002/jat.3437
    While nano-sized construct (NSC) use in medicine has grown significantly in recent years, reported unwanted side effects have raised safety concerns. However, the toxicity of NSCs to the cardiovascular system (CVS) and the relative merits of the associated evaluation methods have not been thoroughly studied. This review discusses the toxicological profiles of selected NSCs and provides an overview of the assessment methods, including in silico, in vitro, ex vivo and in vivo models and how they are related to CVS toxicity. We conclude the review by outlining the merits of telemetry coupled with spectral analysis, baroreceptor reflex sensitivity analysis and echocardiography as an appropriate integrated strategy for the assessment of the acute and chronic impact of NSCs on the CVS. Copyright © 2017 John Wiley & Sons, Ltd.
    Matched MeSH terms: Cardiovascular System/drug effects*
  9. Kotyla PJ, Islam MA, Engelmann M
    Int J Mol Sci, 2020 Oct 07;21(19).
    PMID: 33036382 DOI: 10.3390/ijms21197390
    Janus kinase (JAK) inhibitors, a novel class of targeted synthetic disease-modifying antirheumatic drugs (DMARDs), have shown their safety and efficacy in rheumatoid arthritis (RA) and are being intensively tested in other autoimmune and inflammatory disorders. Targeting several cytokines with a single small compound leads to blocking the physiological response of hundreds of genes, thereby providing the background to stabilize the immune response. Unfortunately, blocking many cytokines with a single drug may also bring some negative consequences. In this review, we focused on the activity of JAK inhibitors in the cardiovascular system of patients with RA. Special emphasis was put on the modification of heart performance, progression of atherosclerosis, lipid profile disturbance, and risk of thromboembolic complications. We also discussed potential pathophysiological mechanisms that may be responsible for such JAK inhibitor-associated side effects.
    Matched MeSH terms: Cardiovascular System/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links