Displaying all 9 publications

Abstract:
Sort:
  1. Raja N, Shamsudin MN, Somarny W, Rosli R, Rahim RA, Radu S
    PMID: 11485069
    A total of 11 Vibrio cholerae isolates from 1996-1998 outbreaks in Malaysia and 4 V. alginolyticus were analyzed. Isolates were characterized by polymerase chain reaction (PCR) and Southern hybridization for the presence of the gene encoding zonula occludens toxin (zot). Screening of zot gene by PCR revealed the presence of this gene in V. cholerae and V. alginolyticus. The zot gene from one V. cholerae Ogawa isolate that was cloned in a pCR 2.1 TOPO vector was sequenced. The sequences obtained were 99% homologous to the zot gene sequence from the Gene Bank.
    Matched MeSH terms: Cholera Toxin/genetics*
  2. Haryanti T, Mariana NS, Latifah SY, Yusoff K, Raha AR
    Pak J Biol Sci, 2008 Jul 01;11(13):1718-22.
    PMID: 18819625
    The ctxB gene, the causative agent of cholera epidemic was successfully cloned from V. cholerae in E. coli. The insertion of the gene was confirmed by PCR as well as restriction digestion analyses. The sequencing results for the gene confirmed that the insert was in the correct orientation and in-frame with the P(BAD) promoter and it showed that the gene was 99% homologous to the published ctxB sequence. The CTB protein was successfully expressed in E. coli using the pBAD/His vector system. The expected protein of approximately 14 kDa was detected by SDS-PAGE and Western blot. The use of pBAD/His vector to express the cholera toxin gene in E. coli would facilitate future study of toxin gene products.
    Matched MeSH terms: Cholera Toxin/genetics
  3. Rosli R, Nograles N, Hanafi A, Nor Shamsudin M, Abdullah S
    Hum Vaccin Immunother, 2013 Oct;9(10):2222-7.
    PMID: 24051430 DOI: 10.4161/hv.25325
    Polymeric carriers in the form of cellulose acetate phthalate (CAP) and alginate (ALG) microspheres were used for encapsulation of plasmid DNA for oral mucosal immunization. Access into the intestinal mucosa by pVAX1 eukaryotic expression plasmid vectors carrying gene-coding sequences, either for the cholera enterotoxin B subunit (ctxB) immunostimulatory antigen or the green fluorescent protein (GFP), delivered from both types of microsphere carriers were examined in orally immunized BALB/c mice. Demonstration of transgene protein expression and IgA antibody responses at local mucosal sites suggest immunological response to a potential oral DNA vaccine formulated within the microsphere carriers.
    Matched MeSH terms: Cholera Toxin/genetics
  4. Chen CH, Shimada T, Elhadi N, Radu S, Nishibuchi M
    Appl Environ Microbiol, 2004 Apr;70(4):1964-72.
    PMID: 15066786
    Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.
    Matched MeSH terms: Cholera Toxin/genetics*
  5. Ang GY, Yu CY, Yean CY
    Biosens Bioelectron, 2012 Oct-Dec;38(1):151-6.
    PMID: 22705404 DOI: 10.1016/j.bios.2012.05.019
    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis.
    Matched MeSH terms: Cholera Toxin/genetics*
  6. Chua AL, Elina HT, Lim BH, Yean CY, Ravichandran M, Lalitha P
    J Med Microbiol, 2011 Apr;60(Pt 4):481-485.
    PMID: 21183596 DOI: 10.1099/jmm.0.027433-0
    Vibrio cholerae has caused severe outbreaks of cholera worldwide with thousands of recorded deaths annually. Molecular diagnosis for cholera has become increasingly important for rapid detection of cholera as the conventional methods are time-consuming and labour intensive. However, traditional PCR tests still require cold-chain transportation and storage as well as trained personnel to perform, which makes them user-unfriendly. The aim of this study was to develop a thermostabilized triplex PCR test for cholera which is in a ready-to-use form and requires no cold chain. The PCR test specifically detects both toxigenic and non-toxigenic strains of V. cholerae based on the cholera toxin A (ctxA) and outer-membrane lipoprotein (lolB) genes. The thermostabilized triplex PCR also incorporates an internal amplification control that helps to check for PCR inhibitors in samples. PCR reagents and the specific primers were lyophilized into a pellet form in the presence of trehalose, which acts as an enzyme stabilizer. The triplex PCR was validated with 174 bacteria-spiked stool specimens and was found to be 100 % sensitive and specific. The stability of the thermostabilized PCR was evaluated using the Q10 method and it was found to be stable for approximately 7 months at 24 °C. The limit of detection of the thermostabilized triplex PCR assay was 2×10(4) c.f.u. at the bacterial cell level and 100 pg DNA at the genomic DNA level, comparable to conventional PCR methods. In conclusion, a rapid thermostabilized triplex PCR assay was developed for detecting toxigenic and non-toxigenic V. cholerae which requires minimal pipetting steps and is cold chain-free.
    Matched MeSH terms: Cholera Toxin/genetics*
  7. Chan M, Cheong TG, Kurunathan S, Chandrika M, Ledon T, Fando R, et al.
    Microb Pathog, 2010 Nov;49(5):211-6.
    PMID: 20558271 DOI: 10.1016/j.micpath.2010.06.001
    Cholera caused by the O139 serogroup still remains a public health concern in certain regions of the world and the existing O1 vaccines do not cross-protect cholera caused by this serogroup. An aminolevulinic acid (ALA) auxotroph vaccine candidate against the O139 serogroup, designated as VCUSM2, was recently developed. It was found to be immunogenic in animal model studies but showed mild reactogenic effects due to the presence of two intact copies of Vibrio cholerae toxin (CTX) genetic element. In the present study we have modified the ctx operon by systematic allelic replacement methodology to produce a mutant strain, designated as VCUSM14. This strain has two copies of chromosomally integrated and mutated ctxA gene, encoding immunogenic but not toxic cholera toxin A subunit (CT-A). The amino acids arginine and glutamic acid at position 7th and 112th, respectively, in CT-A of VCUSM14 were substituted with lysine (R7K) and glutamine (E112Q), respectively. Two copies of the ace and zot genes present in the ctx operon were also deleted. Cholera toxin-ELISA using GM1 ganglioside showed that the both wild type CT and mutated CT were recognized by anti-CT polyclonal antibodies. VCUSM14 produced comparatively less amount of antigenic cholera toxin when compared to the VCUSM2 and Bengal wild type strain. VCUSM14 did not elicit fluid accumulation when inoculated into rabbit ileal loops at doses of 10(6) and 10(8) CFU. The colonization efficiency of VCUSM14 was one log lower than the parent strain, VCUSM2, which can be attributed to the ALA auxotrophy and less invasive properties of VCUSM14. VCUSM14, thus a non-reactogenic auxotrophic vaccine candidate against infection by O139 V. cholerae.
    Matched MeSH terms: Cholera Toxin/genetics*
  8. Teh CS, Suhaili Z, Lim KT, Khamaruddin MA, Yahya F, Sajili MH, et al.
    Emerg Infect Dis, 2012 Jul;18(7):1177-9.
    PMID: 22709679 DOI: 10.3201/eid1807.111656
    A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures.
    Matched MeSH terms: Cholera Toxin/genetics*
  9. Ang GY, Yu CY, Balqis K, Elina HT, Azura H, Hani MH, et al.
    J Clin Microbiol, 2010 Nov;48(11):3963-9.
    PMID: 20826646 DOI: 10.1128/JCM.01086-10
    A total of 20 Vibrio cholerae isolates were recovered for investigation from a cholera outbreak in Kelantan, Malaysia, that occurred between November and December 2009. All isolates were biochemically characterized as V. cholerae serogroup O1 Ogawa of the El Tor biotype. They were found to be resistant to multiple antibiotics, including tetracycline, erythromycin, sulfamethoxazole-trimethoprim, streptomycin, penicillin G, and polymyxin B, with 35% of the isolates being resistant to ampicillin. All isolates were sensitive to ciprofloxacin, norfloxacin, chloramphenicol, gentamicin, and kanamycin. Multiplex PCR analysis confirmed the biochemical identification and revealed the presence of virulence genes, viz., ace, zot, and ctxA, in all of the isolates. Interestingly, the sequencing of the ctxB gene showed that the outbreak strain harbored the classical cholera toxin gene and therefore belongs to the newly assigned El Tor variant biotype. Clonal analysis by pulsed-field gel electrophoresis demonstrated that a single clone of a V. cholerae strain was responsible for this outbreak. Thus, we present the first molecular evidence that the toxigenic V. cholerae O1 El Tor variant has invaded Malaysia, highlighting the need for continuous monitoring to facilitate early interventions against any potential epidemic by this biotype.
    Matched MeSH terms: Cholera Toxin/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links