CASE PRESENTATION: Here we report a 16-year-old Malaysian Chinese boy, a product of a non-consanguineous marriage, who presented with intellectual disability, facial dysmorphism, high arched palate, congenital talipes equinovarus (clubfoot), congenital scoliosis, congenital heart defect, and behavioral problems. A routine chromosome analysis on 20 metaphase cells showed a normal 46, XY G-banded karyotype. Array-based comparative genomic hybridization was performed using a commercially available 244 K 60-mer oligonucleotide microarray slide according to the manufacturer's protocol. This platform allows genome-wide survey and molecular profiling of genomic aberrations with an average resolution of about 10 kB. In addition, multiplex ligation-dependent probe amplification analysis was carried out using SALSA MLPA kit P320 Telomere-13 to confirm the array-based comparative genomic hybridization finding. Array-based comparative genomic hybridization analysis revealed a 7.3 MB terminal deletion involving chromosome band 18q22.3-qter. This finding was confirmed by multiplex ligation-dependent probe amplification, where a deletion of ten probes mapping to the 18q22.3-q23 region was detected, and further multiplex ligation-dependent probe amplification analysis on his parents showed the deletion to be de novo.
CONCLUSION: The findings from this study expand the phenotypic spectrum of the 18q- deletion syndrome by presenting a variation of typical 18q- deletion syndrome features to the literature. In addition, this case report demonstrated the ability of the molecular karyotyping method, such as array-based comparative genomic hybridization, to assist in the diagnosis of cases with a highly variable phenotype and variable aberrations, such as 18q- deletion syndrome.
METHODS: Fifty follicular lymphoma cases were retrieved from the files of the Department of Pathology, University of Malaya Medical Centre (UMMC). Nested PCR amplification of MBR/JH and mcr/JH was performed in these cases, and those cases that did not demonstrate the translocation were subjected to FISH analysis.
RESULTS: Thirty cases (60%) had t(14;18) translocation detected by PCR, 25 (50%) had breakpoint with MBR and five (10%) involved mcr. Twenty cases without detectable t(14;18) translocation by PCR were analysed by FISH. Eleven cases were successfully probed, and four of them showed positive translocation signal.
CONCLUSIONS: The combination of PCR and FISH analysis on paraffin tissue sections for the detection of t(14;18) translocation increases the sensitivity of detection from 60 to 68%. Problems encountered in our FISH analysis on tissue sections impose certain limitations in using this technique for retrospective screening of large number of samples. Therefore, we suggested the application of PCR as the first screening tool on retrospective archival materials, followed by FISH on those PCR-negative cases.